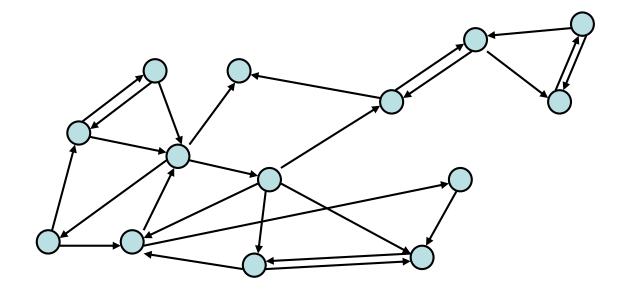
cse 311: foundations of computing

Fall 2015

Lecture 26: Relations and directed graphs



relations

Let A and B be sets.

A binary relation from A to B is a subset of A × B

Let A be a set.

A binary relation on A is a subset of A × A

relations you already know!

```
\geq on \mathbb{N}
    \{(x,y): x \ge y \text{ and } x, y \in \mathbb{N}\}
< on \mathbb{R}
    \{(x,y): x < y \text{ and } x, y \in \mathbb{R}\}
= on \Sigma^*
    \{(x,y): x = y \text{ and } x, y \in \Sigma^*\}
\subseteq on \mathcal{P}(U) for universe U
    \{(A,B): A \subseteq B \text{ and } A, B \in \mathcal{P}(U)\}
```

examples

$$R_1 = \{(a, 1), (a, 2), (b, 1), (b, 3), (c, 3)\}$$

$$R_2 = \{(x, y) \mid x \equiv y \pmod{5} \}$$

$$R_3 = \{(c_1, c_2) \mid c_1 \text{ is a prerequisite for } c_2\}$$

R₄ = {(s, c) | student s had taken course c }

properties of relations

Let R be a relation on A.

R is reflexive \Leftrightarrow (a,a) \in R for every a \in A

R is symmetric \Leftrightarrow (a,b) \in R implies (b, a) \in R

R is antisymmetric \Leftrightarrow (a,b) \in R and a \neq b implies (b,a) \notin R

R is transitive \Leftrightarrow (a,b) \in R and (b, c) \in R implies (a, c) \in R

combining relations

Let R be a relation from A to B. Let S be a relation from B to C.

The composition of R and S, S • R is the relation from A to C defined by:

$$S \circ R = \{(a, c) \mid \exists b \text{ such that } (a, b) \in R \text{ and } (b, c) \in S\}$$

Intuitively, a pair is in the composition if there is a "connection" from the first to the second.

 $(a, b) \in Parent \Leftrightarrow b is a parent of a$

 $(a, b) \in Sister \Leftrightarrow b is a sister of a$

When is $(x, y) \in Sister \circ Parent?$

When is $(x, y) \in Parent \circ Sister$?

examples

Using the relations: Parent, Child, Brother, Sister, Sibling, Father, Mother, Husband, Wife express:

Uncle: b is an uncle of a

Cousin: b is a cousin of a

examples

Using the relations: Parent, Child, Brother, Sister, Sibling, Father, Mother, Husband, Wife express:

Uncle: b is an uncle of a

Uncle = Brother • Parent

Cousin: b is a cousin of a

Cousin = Child • Sibling • Parent

powers of a relation

$$R^2 = R \circ R$$

= $\{(a,c) \mid \exists b \text{ such that } (a,b) \in R \text{ and } (b,c) \in R \}$

$$R^0 = \{(a, a) \mid a \in A\}$$

$$R^1 = R$$

$$R^{n+1} = R^n \circ R$$

powers of a relation

$$R^2 = R \circ R$$

= $\{(a,c) \mid \exists b \text{ such that } (a,b) \in R \text{ and } (b,c) \in R \}$
Parent² = GrandParent

$$R^0 = \{(a, a) \mid a \in A\}$$
 R^0 is always equality

$$R^1 = R$$

$$R^{n+1} = R^n \circ R$$

matrix represenation

Relation R on $A = \{a_1, ..., a_p\}$

$$m_{ij} = \begin{cases} 1 & \text{if } (a_i, a_j) \in R, \\ 0 & \text{if } (a_i, a_j) \notin R. \end{cases}$$

 $\{(1, 1), (1, 2), (1, 4), (2,1), (2,3), (3,2), (3,3), (4,2), (4,3)\}$

	1	2	3	4
1	1	1	0	1
2	1	0	1	0
3	0	1	1	0
4	0	1	1	0

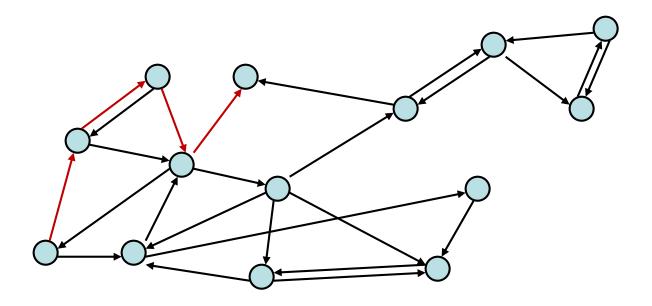
directed graphs

G = (V, E) V – vertices

E – edges, ordered pairs of vertices

Path: v_0 , v_1 , ..., v_k , with (v_i, v_{i+1}) in E

Simple Path



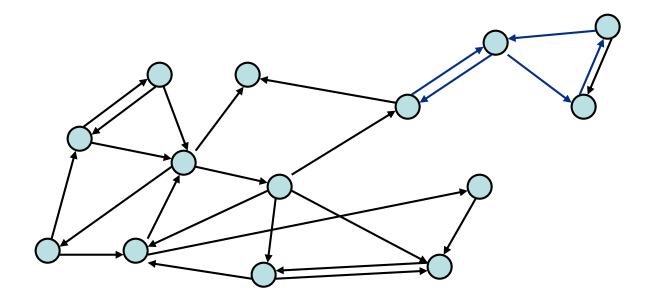
directed graphs

G = (V, E) V – vertices

E – edges, ordered pairs of vertices

Path: v_0 , v_1 , ..., v_k , with (v_i, v_{i+1}) in E

Simple Path Cycle

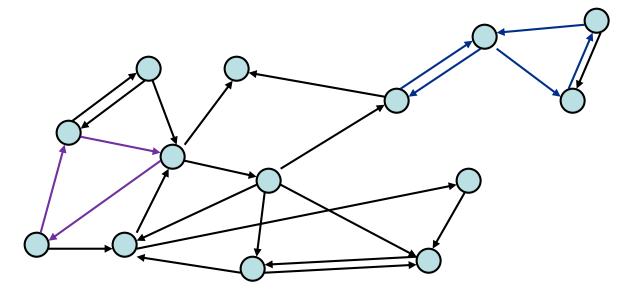


directed graphs

G = (V, E) V - vertices E - edges, ordered pairs of vertices

Path: v_0 , v_1 , ..., v_k , with (v_i, v_{i+1}) in E

Simple Path Cycle Simple Cycle

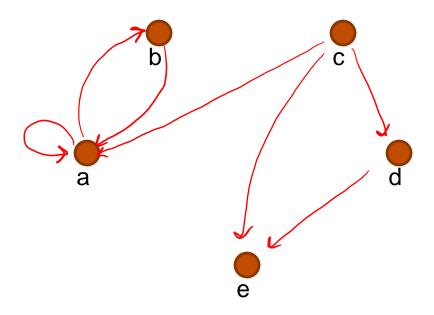


representation of relations

Directed Graph Representation (Digraph)

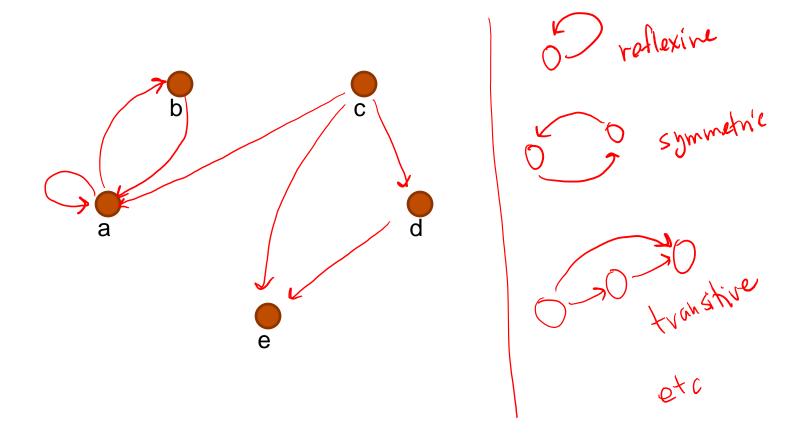
representation of relations

Directed Graph Representation (Digraph)



representation of relations

Directed Graph Representation (Digraph)

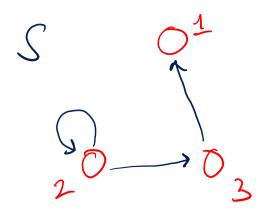


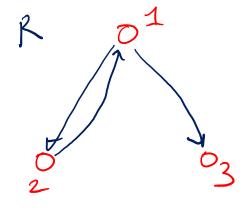
relational composition using digraphs

If $S = \{(2,2), (2,3), (3,1)\}$ and $R = \{(1,2), (2,1), (1,3)\}$ Compute $S \circ R$

relational composition using digraphs

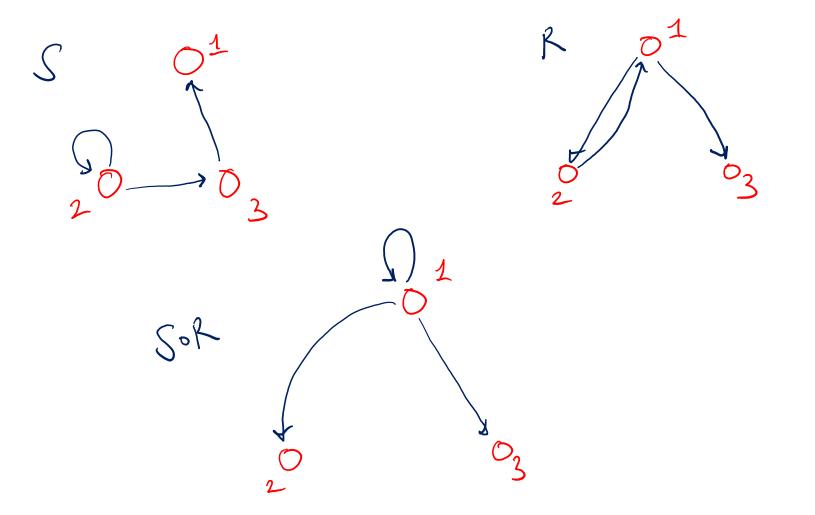
If $S = \{(2,2), (2,3), (3,1)\}$ and $R = \{(1,2), (2,1), (1,3)\}$ Compute $S \circ R$





relational composition using digraphs

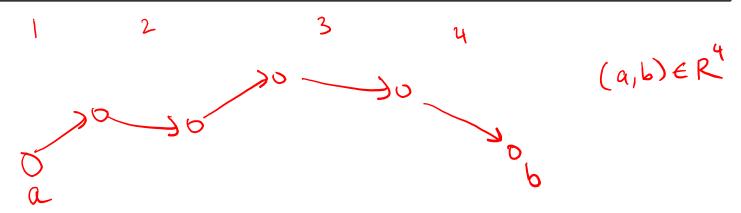
If $S = \{(2,2), (2,3), (3,1)\}$ and $R = \{(1,2), (2,1), (1,3)\}$ Compute $S \circ R$



paths in relations and graphs

A **path** in a graph of length n is a list of edges with vertices next to each other.

Let R be a relation on a set A. There is a path of length n from a to b if and only if $(a,b) \in R^n$



connectivity in graphs

Two vertices in a graph are **connected** iff there is a path between them.

Let R be a relation on a set A. The connectivity relation R* consists of the pairs (a, b) such that there is a path from a to b in R.

$$R^* = \bigcup_{k=0}^{\infty} R^k$$

Note: The book uses the wrong definition of this quantity. What the text defines (ignoring k=0) is usually called R⁺

properties of relations (repeated)

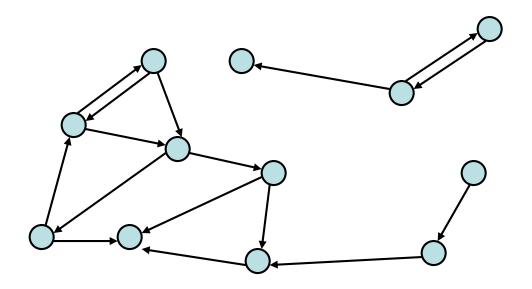
Let R be a relation on A.

R is reflexive \Leftrightarrow (a,a) \in R for every a \in A

R is symmetric \Leftrightarrow (a,b) \in R implies (b, a) \in R

R is transitive \Leftrightarrow (a,b) \in R and (b, c) \in R implies (a, c) \in R

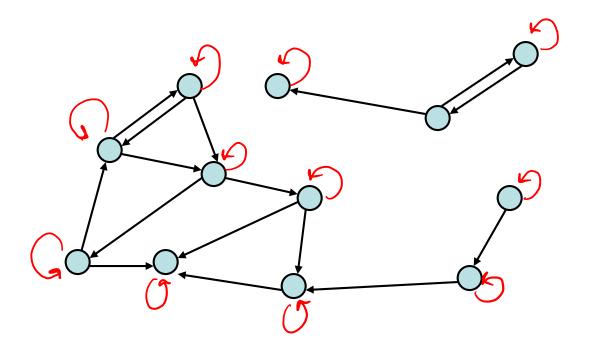
transitive-reflexive closure



Add the minimum possible number of edges to make the relation transitive and reflexive.

The transitive-reflexive closure of a relation R is the connectivity relation R*

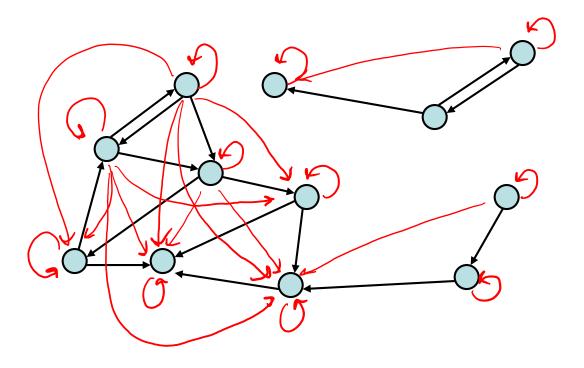
transitive-reflexive closure



Add the minimum possible number of edges to make the relation transitive and reflexive.

The transitive-reflexive closure of a relation R is the connectivity relation R*

transitive-reflexive closure



Add the minimum possible number of edges to make the relation transitive and reflexive.

The transitive-reflexive closure of a relation R is the connectivity relation R*

n-ary relations

Let $A_1, A_2, ..., A_n$ be sets. An **n-ary** relation on these sets is a subset of $A_1 \times A_2 \times \cdots \times A_n$.

application: relational databases

STUDENT

Student_Name	ID_Number	Office	GPA
Knuth	328012098	022	4.00
Von Neuman	481080220	555	3.78
Russell	238082388	022	3.85
Einstein	238001920	022	2.11
Newton	1727017	333	3.61
Karp	348882811	022	3.98
Bernoulli	2921938	022	3.21

relational databases

STUDENT

Student_Name	ID_Number	Office	GPA	Course
Knuth	328012098	022	4.00	CSE311
Knuth	328012098	022	4.00	CSE351
Von Neuman	481080220	555	3.78	CSE311
Russell	238082388	022	3.85	CSE312
Russell	238082388	022	3.85	CSE344
Russell	238082388	022	3.85	CSE351
Newton	1727017	333	3.61	CSE312
Karp	348882811	022	3.98	CSE311
Karp	348882811	022	3.98	CSE312
Karp	348882811	022	3.98	CSE344
Karp	348882811	022	3.98	CSE351
Bernoulli	2921938	022	3.21	CSE351

What's not so nice?

relational databases

STUDENT

Student_Name	ID_Number	Office	GPA
Knuth	328012098	022	4.00
Von Neuman	481080220	555	3.78
Russell	238082388	022	3.85
Einstein	238001920	022	2.11
Newton	1727017	333	3.61
Karp	348882811	022	3.98
Bernoulli	2921938	022	3.21

TAKES

ID_Number	Course
328012098	CSE311
328012098	CSE351
481080220	CSE311
238082388	CSE312
238082388	CSE344
238082388	CSE351
1727017	CSE312
348882811	CSE311
348882811	CSE312
348882811	CSE344
348882811	CSE351
2921938	CSE351

Better

database operations: projection

Find all offices: $\Pi_{\text{Office}}(\text{STUDENT})$

Office	
022	
555	
333	

Find offices and GPAs: $\Pi_{\text{Office,GPA}}(\text{STUDENT})$

Office	GPA
022	4.00
555	3.78
022	3.85
022	2.11
333	3.61
022	3.98
022	3.21

database operations: selection

Find students with GPA > 3.9 : $\sigma_{\text{GPA}>3.9}(\text{STUDENT})$

Student_Name	ID_Number	Office	GPA
Knuth	328012098	022	4.00
Karp	348882811	022	3.98

Retrieve the name and GPA for students with GPA > 3.9: $\Pi_{\text{Student_Name,GPA}}(\sigma_{\text{GPA}>3.9}(\text{STUDENT}))$

Student_Name	GPA
Knuth	4.00
Karp	3.98

database operations: natural join

Student ⋈ Takes

Student_Name	ID_Number	Office	GPA	Course
Knuth	328012098	022	4.00	CSE311
Knuth	328012098	022	4.00	CSE351
Von Neuman	481080220	555	3.78	CSE311
Russell	238082388	022	3.85	CSE312
Russell	238082388	022	3.85	CSE344
Russell	238082388	022	3.85	CSE351
Newton	1727017	333	3.61	CSE312
Karp	348882811	022	3.98	CSE311
Karp	348882811	022	3.98	CSE312
Karp	348882811	022	3.98	CSE344
Karp	348882811	022	3.98	CSE351
Bernoulli	2921938	022	3.21	CSE351