
cse 311: foundations of computing

Fall 2015
Lecture 25: Limitations of DFAs (irregular languages)

All

Context-Free

Regular

Finite

0*

??? Main Event:
Prove there is
a context-free
language that
isn’t regular.

languages and machines!

{001, 10, 12}

DFA
NFA

Regex

generalized NFAs

• Like NFAs but allow
– Parallel edges
– Regular Expressions as edge labels

NFAs already have edges labeled ɛ or a

• An edge labeled by A can be followed by reading a
string of input chars that is in the language represented
by A

• A string x is accepted iff there is a path from start to
final state labeled by a regular expression whose
language contains x

starting from an NFA

Add new start state and final state

ɛ

ɛ

ɛ

A

Then eliminate original states one by one,
keeping the same language, until it looks like:

Final regular expression will be A

only two simplification rules

• Rule 1: For any two states q1 and q2 with parallel edges
(possibly q1=q2), replace

• Rule 2: Eliminate non-start/final state q3 by replacing
all

 for every pair of states q1, q2 (even if q1=q2)

q1
q2

A

B
by

A⋃B
q1

q2

A
B

C AB*C q1 q3 q2 q1
q2 by

converting an NFA to a regular expression

Consider the DFA for the mod 3 sum
– Accept strings from {0,1,2}* where the digits mod 3 sum of

the digits is 0

t0 t2

t1

0

0

0

1 1

1

2

2 2

splicing out a node

Label edges with regular expressions

t0 t2

t1

0

0

1 1

1

2

2 2

t0→t1→t0 : 10*2
t0→t1→t2 : 10*1
t2→t1→t0 : 20*2
t2→t1→t2 : 20*1

0

s
ɛ

f

ɛ

finite automaton without t1

t0 t2
R1

R1: 0 ∪ 10*2
R2: 2 ∪ 10*1
R3: 1 ∪ 20*2
R4: 0 ∪ 20*1

R5: R1 ∪ R2R4*R3

R4 R2

R3

t0
R5

Final regular expression:
(0 ∪ 10*2 ∪ (2 ∪ 10*1)(0 ∪ 20*1)*(1 ∪ 20*2))*

f

ɛ

s
ɛ

f

ɛ

s
ɛ

irregular language!

𝐵 = {binary palindromes} can’t be recognized by any DFA

Why is this language not regular?

Intuition (not a proof):
 Q: What would a DFA need to keep track of to decide the
language?
 A: It would need to keep track of the “first part” of the input in
order
 to check the second part against it… but there are an infinite #
of
 possible first parts and we only have finitely many states.

How do we prove it?

That’s a nice set of first parts to have to remember but how
can we argue that a DFA does the wrong thing for B?
• Show that some x ∈ B and some y ∉ B both must end up

at the same state of the DFA

That state can’t be
• a final state since then y is accepted: error on y
• a non-final state since then x is rejected: error on x

𝐵 = {binary palindromes} can’t be recognized by any DFA

Consider the infinite set of strings
𝑆 = {1, 01, 001, 0001, 00001, … } = {0𝑛1 ∶ 𝑛 ≥ 0}

𝐵 = {binary palindromes} can’t be recognized by any DFA

Consider the infinite set of strings
𝑆 = {1, 01, 001, 0001, 00001, … } = {0𝑛1 ∶ 𝑛 ≥ 0}

Suppose we are given an arbitrary DFA M.

• Goal: Show that some x ∈ B and some y ∉ B both must end up at the
same state of M

Since S is infinite we know that two different strings in S must land in
the same state of M, call them 0i1 and 0j1 for i≠j.

• That also must be true for 0
i1z and 0j1z for any z ∈ {0,1}* !

In particular, with z=0i we get that 0i10i and 0j10i end up at the same
state of M. Since 0i10i ∈ B and 0j10i ∉ B (because i≠j), M does not
recognize B. ∴ no DFA can recognize B.

0

i1 ?
0

j1

showing a language 𝐿 is not regular

1. Find an infinite set S={s0,s1,...,sn,...} of string prefixes that you think
will need to be remembered separately

2. “Let M be an arbitrary DFA. Since S is infinite and M is finite state
there must be two strings si and sj in S for some i ≠ j that end up at the
same state of M.”

 Note: You don’t get to choose which two strings si and sj

3. Find a string t (typically depending on si and/or sj) such that
 sit is in L, and or sit is not in L, and
 sjt is not in L sjt is in L

4. “Since si and sj both end up at the same state of M, and we appended
the same string t, both sit and sjt end at the same state of M. Since
sit ∈ L and sjt ∉ L, M does not recognize L.”

5. “Since M was arbitrary, no DFA recognizes L.”

𝐴 = {0𝑛1𝑛 ∶ 𝑛 ≥ 0} cannot be recognized by any DFA

1. Find an infinite set S={s0,s1,...,sn,...} of string prefixes that you think
will need to be remembered separately

2. “Let M be an arbitrary DFA. Since S is infinite and M is finite state
there must be two strings si and sj in S for some i ≠ j that end up at the
same state of M.”

3. Find a string t (typically depending on si and/or sj) such that
 sit is in L, and
 sjt is not in L

4. “Since si and sj both end up at the same state of M, and we appended
the same string t, both sit and sjt end at the same state of M. Since
sit ∈ L and sjt ∉ L, M does not recognize L.”

5. “Since M was arbitrary, no DFA recognizes L.”

𝐴 = {0𝑛1𝑛 ∶ 𝑛 ≥ 0} cannot be recognized by any DFA

1. Find an infinite set S={s0,s1,...,sn,...} of string prefixes that you think
will need to be remembered separately

2. “Let M be an arbitrary DFA. Since S is infinite and M is finite state
there must be two strings si and sj in S for some i ≠ j that end up at the
same state of M.”

3. Find a string t (typically depending on si and/or sj) such that
 sit is in L, and
 sjt is not in L

4. “Since si and sj both end up at the same state of M, and we appended
the same string t, both sit and sjt end at the same state of M. Since
sit ∈ L and sjt ∉ L, M does not recognize L.”

5. “Since M was arbitrary, no DFA recognizes L.”

𝑆 = {0𝑛 ∶ 𝑛 ≥ 0}

𝑠𝑖 = 0𝑖 , 𝑠𝑗 = 0𝑗

𝑡 = 1𝑖

another irregular language

Intuition: Need to remember difference in # of 01 or 10 substrings seen,
but only hard to do if these are separated by 2’s.
1. Let S={, 012, 012012, 012012012, ...} = {(012)n : n ∊ ℕ}

2. Let M be an arbitrary DFA. Since S is infinite and M is finite, there must be
 two strings (012) i and (012) j for some i ≠ j that end up at the same state of
M.

3. Consider appending string t = (102) i to each of these strings.
 Then (012)i (102) i ∈ L but (012) j (102) i ∉ L since i ≠ j

4. So (012) i (102) i and (012) j (102) i end up at the same state of M

 since (012)
i and (012)

j do. Since (012)
i (102) i ∈ L and

 (012)
j (102) i ∉ L, M does not recognize L.

5. Since M was arbitrary, no DFA recognizes L.

𝐿 = {𝑥 ∊ {0, 1,2}*: 𝑥 has an equal number of substrings 01 and 10}.

