

Fall 2015 Lecture 25: Limitations of DFAs (irregular languages)

languages and machines!

- Like NFAs but allow
 - Parallel edges
 - Regular Expressions as edge labels NFAs already have edges labeled ϵ or a
- An edge labeled by A can be followed by reading a string of input chars that is in the language represented by A
- A string x is accepted iff there is a path from start to final state labeled by a regular expression whose language contains x

starting from an NFA

Add new start state and final state

Then eliminate original states one by one, keeping the same language, until it looks like:

Final regular expression will be **A**

 Rule 1: For any two states q₁ and q₂ with parallel edges (possibly q₁=q₂), replace

Rule 2: Eliminate non-start/final state q₃ by replacing all

$$(q_1)$$
 $\xrightarrow{\mathbf{A}} (q_3)$ $\xrightarrow{\mathbf{C}} (q_2)$ by (q_1) $\xrightarrow{\mathbf{AB*C}} (q_2)$

for *every* pair of states q_1 , q_2 (even if $q_1=q_2$)

converting an NFA to a regular expression

Consider the DFA for the mod 3 sum

 Accept strings from {0,1,2}* where the digits mod 3 sum of the digits is 0

Label edges with regular expressions

finite automaton without t₁

Final regular expression: (0 ∪ 10*2 ∪ (2 ∪ 10*1)(0 ∪ 20*1)*(1 ∪ 20*2))*

B = {binary palindromes} can't be recognized by any DFA

Why is this language not regular?

Intuition (**not a proof**):

Q: What would a DFA need to keep track of to decide the language?

A: It would need to keep track of the "first part" of the input in order

to check the second part against it... but there are an infinite # of

possible first parts and we only have finitely many states.

How do we prove it?

B = {binary palindromes} can't be recognized by any DFA

Consider the infinite set of strings $S = \{1, 01, 001, 0001, 00001, ...\} = \{0^n 1 : n \ge 0\}$

That's a nice set of first parts to have to remember but how can we argue that a DFA does the wrong thing for B?

 Show that some x ∈ B and some y ∉ B both must end up at the same state of the DFA

That state can't be

- a final state since then y is accepted: error on y
- a non-final state since then x is rejected: error on x

B = {binary palindromes} can't be recognized by any DFA

Consider the infinite set of strings

 $S = \{1, 01, 001, 0001, 00001, \dots\} = \{0^n 1 : n \ge 0\}$

Suppose we are given an arbitrary DFA M.

• Goal: Show that some $x \in B$ and some $y \not\in B$ both must end up at the same state of M

Since **S** is infinite we know that two different strings in **S** must land in the same state of **M**, call them $0^{i}1$ and $0^{j}1$ for $i \neq j$.

• That also must be true for $0^{i}1z$ and $0^{j}1z$ for any $z \in \{0,1\}^{*}$!

In particular, with $z=0^i$ we get that 0^i10^i and 0^j10^i end up at the same state of **M**. Since $0^i10^i \in B$ and $0^j10^i \notin B$ (because $i \neq j$), M does not recognize **B**. \therefore no DFA can recognize **B**.

showing a language *L* is not regular

- 1. Find an infinite set $S = \{s_0, s_1, ..., s_n, ...\}$ of string prefixes that you think will need to be remembered separately
- 2. "Let **M** be an arbitrary DFA. Since **S** is infinite and **M** is finite state there must be two strings \mathbf{s}_i and \mathbf{s}_j in **S** for some $\mathbf{i} \neq \mathbf{j}$ that end up at the same state of **M**."

Note: You don't get to choose which two strings **s**_i and **s**_j

- 3. Find a string t (typically depending on s_i and/or s_j) such that $s_i t$ is in L, and or $s_i t$ is not in L, and $s_j t$ is not in L $s_j t$ is in L
- 4. "Since s_i and s_j both end up at the same state of M, and we appended the same string t, both $s_i t$ and $s_j t$ end at the same state of M. Since $s_i t \in L$ and $s_j t \notin L$, M does not recognize L."
- 5. "Since **M** was arbitrary, no DFA recognizes **L**."

$A = \{0^n 1^n : n \ge 0\}$ cannot be recognized by any DFA

- 1. Find an infinite set $S = \{s_0, s_1, ..., s_n, ...\}$ of string prefixes that you think will need to be remembered separately
- 2. "Let **M** be an arbitrary DFA. Since **S** is infinite and **M** is finite state there must be two strings \mathbf{s}_i and \mathbf{s}_j in **S** for some $\mathbf{i} \neq \mathbf{j}$ that end up at the same state of **M**."

- 3. Find a string t (typically depending on s_i and/or s_j) such that $s_i t$ is in L, and $s_j t$ is not in L
- 4. "Since s_i and s_j both end up at the same state of M, and we appended the same string t, both $s_i t$ and $s_j t$ end at the same state of M. Since $s_i t \in L$ and $s_j t \notin L$, M does not recognize L."
- 5. "Since **M** was arbitrary, no DFA recognizes **L**."

$A = \{0^n 1^n : n \ge 0\}$ cannot be recognized by any DFA

- 1. Find an infinite set $S = \{s_0, s_1, ..., s_n, ...\}$ of string prefixes that you think will need to be remembered separately $S = \{0^n : n \ge 0\}$
- 2. "Let **M** be an arbitrary DFA. Since **S** is infinite and **M** is finite state there must be two strings \mathbf{s}_i and \mathbf{s}_j in **S** for some $\mathbf{i} \neq \mathbf{j}$ that end up at the same state of **M**." $s_i = 0^i, s_i = 0^j$
- 3. Find a string t (typically depending on s_i and/or s_j) such that $s_i t$ is in L, and $t = 1^i$ $s_j t$ is not in L
- 4. "Since s_i and s_j both end up at the same state of M, and we appended the same string t, both $s_i t$ and $s_j t$ end at the same state of M. Since $s_i t \in L$ and $s_j t \notin L$, M does not recognize L."
- 5. "Since **M** was arbitrary, no DFA recognizes **L**."

$L = \{x \in \{0, 1, 2\}^*: x \text{ has an equal number of substrings 01 and 10} \}.$

Intuition: Need to remember difference in # of **01** or **10** substrings seen, but only hard to do if these are separated by **2**'s.

1. Let **S**={ε, 012, 012012, 012012012, ...} = {(012)ⁿ : n ∈ ℕ}

Let M be an arbitrary DFA. Since S is infinite and M is finite, there must be two strings (012)ⁱ and (012)^j for some i ≠ j that end up at the same state of M.

- 3. Consider appending string $\mathbf{t} = (102)^{i}$ to each of these strings. Then $(012)^{i} (102)^{i} \in \mathbf{L}$ but $(012)^{j} (102)^{i} \notin \mathbf{L}$ since $i \neq j$
- 4. So (012)ⁱ (102)ⁱ and (012)^j (102)ⁱ end up at the same state of M since (012)ⁱ and (012)^j do. Since (012)ⁱ (102)ⁱ ∈ L and (012)^j (102)ⁱ ∉ L, M does not recognize L.
- 5. Since **M** was arbitrary, no DFA recognizes **L**.