cse 311: foundations of computing

Fall 2015
Lecture 25: Limitations of DFAs (irreqular languages)

\ S41) THeRED BE
IRREGULARITIES

LELL, f HERE!S ONE:




languages and machines!

All

Prove there Is
a context-free
language that
Isn't reqular.

Finite
{001,10, 1 2}/




generalized NFAs

e Like NFAs but allow

— Parallel edges
— Regular Expressions as edge labels
NFAs already have edges labeled € or a

 An edge labeled by A can be followed by reading a
string of input chars that is in the language represented
by A

 Astring x Is accepted iff there is a path from start to
final state labeled by a reqular expression whose
language contains x



starting from an NFA

Add new start state and final state

€

+O0—E—0 _}O

€

Then eliminate original states one by one,
keeping the same language, until it looks like:

>0 A 0

Final regular expression will be A




only two simplification rules

 Rule 1: For any two states g, and g, with parallel edges
(possibly q,=q,), replace
A

* Rule 2: Eliminate non-start/final state g5 by replacing

all
by (g,)—ABC

for every pair of states q,, g, (even if q,=q,)




converting an NFA to a reqular expression

Consider the DFA for the mod 3 sum

— Accept strings from {0,1,2}* where the digits mod 3 sum of
the digits is 0




splicing out a node

Label edges with regular expressions

t,—t,—t,: 10%2
t,—t,—t, 1 10*%1
t,—t,—t,: 20%2
t,—t,—t, 1 20*%1




finite automaton without t,

Ry 0U 10%2
R,: 2U 10*1
Ry 1U 20%2
R, 0 U 20*1

Rs: Ry UR,R,*R,

Final regular expression:
(0 U 10*2 U (2 U 10*1)(0 U 20*1)*(1 U 20*2))*



irregular language!

B = {binary palindromes} can't be recognized by any DFA
Why is this language not reqular?

Intuition (not a proof):

Q: What would a DFA need to keep track of to decide the
language?
A: It would need to keep track of the “first part” of the input in
order
to check the second part against it... but there are an infinite #
of
possible first parts and we only have finitely many states.

How do we prove It?



B = {binary palindromes} can't be recognized by any DFA

Consider the infinite set of strings
S ={1,01,001,0001,00001,..} = {O"1 :n > 0}

That's a nice set of first parts to have to remember but how
can we argue that a DFA does the wrong thing for B?

 Show that some x € B and some y & B both must end up
at the same state of the DFA

That state can't be
- a final state since theny Is accepted: errorony
« anon-final state since then x is rejected: error on x



B = {binary palindromes} can't be recognized by any DFA

Consider the infinite set of strings
S ={1,01,001,0001,00001,..} = {0"1 :n > 0}

Suppose we are given an arbitrary DFA M.

 Goal: Show that some x € B and some y ¢ B both must end up at the
same state of M

Since S is infinite we know that two different strings in S must land in
the same state of M, call them 0'1 and 0'1 for i%j.

L -
2 o

* That also must be true for 0"1z and 0'1z for any z € {0,1}"!

In particular, with z=0' we get that 0'10' and 0'10' end up at the same
state of M. Since 0'10' € B and 0'10' & B (because i#j), M does not
recognize B. . no DFA can recognize B.



showing a language L 1s not regular

1. Find an infinite set S={sy,s,...,s,,...} of string prefixes that you think
will need to be remembered separately

2. “Let Mbe an arbitrary DFA. Since S is infinite and M is finite state
there must be two strings s; and s;in S for some i # that end up at the

same state of M.”
Note: You don't get to choose which two strings s;and s;

3. Find a string t (typically depending on s;and/or s;) such that
stisinL,and or stisnotinL,and
sitisnotinL stisinL

4. "Since s; and s; both end up at the same state of M, and we appended
the same string t, both s;t and st end at the same state of M. Since

steLandsit ¢ L, M does not recogmze L."

5. “Since M was arbitrary, no DFA recognizes L."



A ={0™"1" : n > 0} cannot be recognized by any DFA

1. Find an infinite set S={s;,s;,...,s,,...} of string prefixes that you think
will need to be remembered separately

2. “Let Mbe an arbitrary DFA. Since S is infinite and M is finite state
there must be two strings s; and s;in S for some i # that end up at the

same state of M.”

3. Find a string t (typically depending on s;and/or s;) such that
stisinL,and
sitisnotinL

4. "Since s; and s; both end up at the same state of M, and we appended
the same string t, both s;t and st end at the same state of M. Since

steLandsit ¢ L, M does not recogmze L."

5. “Since M was arbitrary, no DFA recognizes L."



A ={0™"1" : n > 0} cannot be recognized by any DFA

1. Find an infinite set S={s;,s;,...,s,,...} of string prefixes that you think

will need to be remembered separately
= {0" : n = 0}

2. “Let Mbe an arbitrary DFA. Since S is infinite and M is finite state
there must be two strings s; and s;in S for some i # that end up at the

same state of M.”
S; = Ol, Sj = OJ

3. Find a string t (typically depending on s;and/or s;) such that
stisinL,and = q
sitisnotinL

4. "Since s; and s; both end up at the same state of M, and we appended
the same string t, both s;t and st end at the same state of M. Since

steLandsit ¢ L, M does not recogmze L."

5. “Since M was arbitrary, no DFA recognizes L."



another irregular language

L = {x € {0, 1,2}": x has an equal number of substrings 01 and 10}.

Intuition: Need to remember difference in # of 01 or 10 substrings seen,
but only hard to do if these are separated by 2's.

1. Let S={g, 012,012012, 012012012, ..} ={(012)": n & N}

2. Let M be an arbitrary DFA. Since S is infinite and M is finite, there must be

two strings (012)'and (012)! for some i # j that end up at the same state of
M.

3. Consider appending string t = (102)' to each of these strings.
Then (012)'(102)' € L but (012))(102)' & Lsincei#j
4.S0(012)'(102)" and (012) ) (102)" end up at the same state of M

since (012)" and (012)! do. Since (012)'(102)' € L and
(012)1(102)' ¢ L, M does not recognize L.

5. Since M was arbitrary, no DFA recognizes L.



