
cse 311: foundations of computing

Spring 2015
Lecture 23: State minimization and NFAs

state minimization

• Many different FSMs (DFAs) for the same problem
• Take a given FSM and try to reduce its state set by

combining states
– Algorithm will always produce the unique minimal equivalent

machine (up to renaming of states) but we won’t prove this

state minimization algorithm

1. Put states into groups based on their outputs (or whether
they are final states or not)

2. Repeat the following until no change happens
a. If there is a symbol s so that not all states in a group G

agree on which group s leads to, split G into smaller groups
based on which group the states go to on s

G1

G2

G3

s

s

s

s

state minimization example

state
transition table

present next state output
 state 0 1 2 3
 S0 S0 S1 S2 S3 1
 S1 S0 S3 S1 S5 0
 S2 S1 S3 S2 S4 1
 S3 S1 S0 S4 S5 0
 S4 S0 S1 S2 S5 1
 S5 S1 S4 S0 S5 0

2
1

3

0

0

1

3 2

2

1

3
0

2
0

3

0

3 2

1

2

3
1

0

S0
[1]

S2
[1]

S4
[1]

S1
[0]

S3
[0]

S5
[0]

1

Put states into groups based on their

outputs (or whether they are final states

or not)

state minimization example

state
transition table

present next state output
 state 0 1 2 3
 S0 S0 S1 S2 S3 1
 S1 S0 S3 S1 S5 0
 S2 S1 S3 S2 S4 1
 S3 S1 S0 S4 S5 0
 S4 S0 S1 S2 S5 1
 S5 S1 S4 S0 S5 0 2

1

3

0

0

1

3 2

2

1

3
0

2
0

3

0

3 2

1

2

3
1

0

S0
[1]

S2
[1]

S4
[1]

S1
[0]

S3
[0]

S5
[0]

1

Put states into groups based on their

outputs (or whether they are final states

or not)

state minimization example

state
transition table

present next state output
 state 0 1 2 3
 S0 S0 S1 S2 S3 1
 S1 S0 S3 S1 S5 0
 S2 S1 S3 S2 S4 1
 S3 S1 S0 S4 S5 0
 S4 S0 S1 S2 S5 1
 S5 S1 S4 S0 S5 0 2

1

3

0

0

1

3 2

2

1

3
0

2
0

3

0

3 2

1

2

3
1

0

S0
[1]

S2
[1]

S4
[1]

S1
[0]

S3
[0]

S5
[0]

1

Put states into groups based on their

outputs (or whether they are final states

or not)

If there is a symbol s so that not all states in

a group G agree on which group s leads to,

split G based on which group the states go

to on s

state minimization example

state
transition table

present next state output
 state 0 1 2 3
 S0 S0 S1 S2 S3 1
 S1 S0 S3 S1 S5 0
 S2 S1 S3 S2 S4 1
 S3 S1 S0 S4 S5 0
 S4 S0 S1 S2 S5 1
 S5 S1 S4 S0 S5 0 2

1

3

0

0

1

3 2

2

1

3
0

2
0

3

0

3 2

1

2

3
1

0

S0
[1]

S2
[1]

S4
[1]

S1
[0]

S3
[0]

S5
[0]

1

Put states into groups based on their

outputs (or whether they are final states

or not)

If there is a symbol s so that not all states in

a group G agree on which group s leads to,

split G based on which group the states go

to on s

state minimization example

state
transition table

present next state output
 state 0 1 2 3
 S0 S0 S1 S2 S3 1
 S1 S0 S3 S1 S5 0
 S2 S1 S3 S2 S4 1
 S3 S1 S0 S4 S5 0
 S4 S0 S1 S2 S5 1
 S5 S1 S4 S0 S5 0 2

1

3

0

0

1

3 2

2

1

3
0

2
0

3

0

3 2

1

2

3
1

0

S0
[1]

S2
[1]

S4
[1]

S1
[0]

S3
[0]

S5
[0]

1

Put states into groups based on their

outputs (or whether they are final states

or not)

If there is a symbol s so that not all states in

a group G agree on which group s leads to,

split G based on which group the states go

to on s

state minimization example

state
transition table

present next state output
 state 0 1 2 3
 S0 S0 S1 S2 S3 1
 S1 S0 S3 S1 S5 0
 S2 S1 S3 S2 S4 1
 S3 S1 S0 S4 S5 0
 S4 S0 S1 S2 S5 1
 S5 S1 S4 S0 S5 0 2

1

3

0

0

1

3 2

2

1

3 0

2
0

3

0

3 2

1

2

3
1

0

S0
[1]

S2
[1]

S4
[1]

S1
[0]

S3
[0]

S5
[0]

1

Put states into groups based on their

outputs (or whether they are final states

or not)

If there is a symbol s so that not all states in

a group G agree on which group s leads to,

split G based on which group the states go

to on s

state minimization example

state
transition table

present next state output
 state 0 1 2 3
 S0 S0 S1 S2 S3 1
 S1 S0 S3 S1 S5 0
 S2 S1 S3 S2 S4 1
 S3 S1 S0 S4 S5 0
 S4 S0 S1 S2 S5 1
 S5 S1 S4 S0 S5 0 2

1

3

0

0

1

3 2

2

1

3 0

2
0

3

0

3 2

1

2

3
1

0

S0
[1]

S2
[1]

S4
[1]

S1
[0]

S3
[0]

S5
[0]

1

Put states into groups based on their

outputs (or whether they are final states

or not)

If there is a symbol s so that not all states in

a group G agree on which group s leads to,

split G based on which group the states go

to on s

state minimization example

state
transition table

present next state output
 state 0 1 2 3
 S0 S0 S1 S2 S3 1
 S1 S0 S3 S1 S5 0
 S2 S1 S3 S2 S4 1
 S3 S1 S0 S4 S5 0
 S4 S0 S1 S2 S5 1
 S5 S1 S4 S0 S5 0 2

1

3

0

0

1

3 2

2

1

3
0

2
0

3

0

3 2

1

2

3
1

0

S0
[1]

S2
[1]

S4
[1]

S1
[0]

S3
[0]

S5
[0]

1

Can combine states S0-S4 and

S3-S5.

In table replace all S4 with S0

and all S5 with S3

minimized machine

state
transition table

present next state output
 state 0 1 2 3
 S0 S0 S1 S2 S3 1
 S1 S0 S3 S1 S3 0
 S2 S1 S3 S2 S0 1
 S3 S1 S0 S0 S3 0
 2

1

3

0

0

1

3

2

2
0

0

3

1,2

S0
[1]

S2
[1]

S1
[0]

S3
[0]

1,3

another way to look at DFAs

s0 s2 s3 s1

1 1 1

0,1

0

0

0

Lemma: x is in the language recognized by a DFA iff
x labels a path from the start state to some final state

Definition: The label of a path in a DFA is the
concatenation of all the labels on its edges in order

nondeterministic finite automaton (NFA)

• Graph with start state, final states, edges labeled by
symbols (like DFA) but
– Not required to have exactly 1 edge out of each state labeled

by each symbol--- can have 0 or >1
– Also can have edges labeled by empty string 

• Definition: x is in the language recognized by an NFA if
and only if x labels a path from the start state to some
final state

s0 s2 s3 s1

1 1 1

0,1 0,1

goal: NFA to recognize...

binary strings that have even # of 1’s or contain the substring
111

three ways of thinking about NFAs

• Outside observer: Is there a path labeled by x from the start
state to some final state?

• Perfect guesser: The NFA has input x and whenever there is

a choice of what to do it magically guesses a good one (if
one exists)

• Parallel exploration: The NFA computation runs all possible

computations on x step-by-step at the same time in parallel

Theorem: For any set of strings (language) 𝐴 described by a
regular expression, there is an NFA that recognizes 𝐴.

Proof idea: Structural induction based on the recursive
definition of regular expressions...

NFAs and regular expressions

regular expressions over 

• Basis:
– , ɛ are regular expressions
– a is a regular expression for any a  

• Recursive step:
– If A and B are regular expressions then so are:

(A  B)
 (AB)
A*

base case

• Case :

• Case ɛ:

• Case a:

base case

• Case :

• Case ɛ:

• Case a:

a

inductive hypothesis

• Suppose that for some regular expressions 𝑨 and 𝑩 there
exist NFAs 𝑁𝐴 and 𝑁𝐵 such that 𝑁𝐴 recognizes the
language given by 𝑨 and 𝑁𝐵 recognizes the language given
by 𝑩

𝑁𝐴 𝑁𝐵

inductive step

Case (A  B):

𝑁𝐴

𝑁𝐵

inductive step

Case (A  B):

𝑁𝐴

𝑁𝐵

ɛ

ɛ

inductive step

Case (AB):

𝑁𝐴 𝑁𝐵

inductive step

Case (AB):

ɛ

ɛ

𝑁𝐴 𝑁𝐵

inductive step

Case A*

𝑁𝐴

inductive step

Case A*

NA

ɛ

ɛ

ɛ

