

cse 311: foundations of computing

Fall 2015

```
Lecture 22: Finite state machines
                                 ()(())
G: S-> SS 1(5)/2
 - Vs it shes matched () - 6 produes S
   P(n) = " + 5 ln(s) = n, if s has () -> G pad. 5.11
  Bose (oge: P(0) 5. 2 5 2
  1H: For som não and ay o sisn. P(j) holds
 IS: Good P(nal). Fix T with metchel ().
    5 \rightarrow .55 \rightarrow (5)5
```

review: finite state machines

- States
- Transitions on inputs
- Start state and final states

 The language recognized by a machine is the set of strings that reach a final state

State	0	1
s_0	s_0	S ₁
s ₁	S_0	s_2
s ₂	S_0	S_3
S ₃	S_3	S_3

applications of FSMs (aka finite automata)

- Implementation of regular expression matching in programs like grep
- Control structures for sequential logic in digital circuits
- Algorithms for communication and cache-coherence protocols
 - Each agent runs its own FSM
- Design specifications for reactive systems
 - Components are communicating FSMs

applications of FSMs (aka finite automata)

- Formal verification of systems
 - Is an unsafe state reachable?
- Computer games
 - FSMs provide worlds to explore
 - Character Al
- Minimization algorithms for FSMs can be extended to more general models used in
 - Text prediction
 - Speech recognition

waka waka

what language does this machine recognize?

can we recognize these languages with DFAs?

• { x ∈ {0,1}*: len(x) > 1}

M₁: Strings with an even number of 2's

M₂: Strings where the sum of digits mod 3 is 0

both: even number of 2's and sum mod 3 = 0

FSMs with output

"Tug-of-war"

	Input		Output
State	L	R	
s ₁	S ₁	S ₂	Beep
s ₂	S ₁	s_3	
s_3	S ₂	S ₄	
S ₄	s_3	S ₅	
S ₅	S ₄	s_5	Веер

vending machine

We're only making \$5.50/hour writing regular expressions.

Let's design a vending machine.

"He does not think like normal people, and as a result his tests are quite difficult. His lectures are amusing and get the material across, but his office hours are not always too helpful. **Beware the vending machine final.**"

Vending spec:

Enter 15 cents in dimes or nickels Press **S** or **B** for a candy bar

vending machine v0.1

Basic transitions on N (nickel), D (dime), B (butterfinger), S (snickers)

Adding output to states: N - Nickel, S - Snickers, B - Butterfinger

Adding additional "unexpected" transitions