cse 311: foundations of computing

Fall 2015
Lecture 21: Context-free grammars and finite state machines

Tl
%hﬁ’ Ly

)

KD

more examples

« All binary strings that have at least one 1.

« All binary strings that have an even # of 1's

« All binary strings that don’t contain 101

limitations of reqular expressions

* Not all languages can be specified by reqular
expressions

 Even some easy things like
— Palindromes
— Strings with equal number of 0's and 1's

 But also more complicated structures in programming languages
— Matched parentheses
— Properly formed arithmetic expressions
— etc.

context-free grammars

« A Context-Free Grammar (CFG) is given by a finite set
of substitution rules involving

— A finite set V of variables that can be replaced
— Alphabet X of terminal symbols that can't be replaced
— One variable, usually S, is called the start symbol

 The rules involving a variable A are written as
A—>w, | wy|-|w,
where each w; is a string of variables and terminals:
w e (Vu)

how CFGs generate strings

* Begin with start symbol S

* |f there is some variable A in the current string you can
replace it by one of the w's in the rules for A
— A-> W, | Wy |- |w
— Write thisas xAy = xw,y
— Repeat until no variables left

 The set of strings the CFG generates are all strings
produced in this way that have no variables

example

Example: S—>0S0|1S1|0|1]|¢

Example: S—>0S|S1]|c¢

example

Grammar for {0"1™:n > 0}
(all strings with same # of 0's and 1's with all 0's before 1's)

Example: Grammar for Matched Paranthesis X = {(,)}.

simple arithmetic expressions

E— E+E|[E<E|(E)|x|y|z|0]|1]2]|34
|516]171819

Generate (2xx)+y

Generate x+y=*z In two fundamentally different ways

parse trees

Suppose that grammar G generates a string x
A parse tree of x for G has
— Root labeled S (start symbol of G)

— The children of any node labeled A are labeled by symbols of w
left-to-right for some rule A — w

— The symbols of x label the leaves ordered left-to-right

S
S >0S0|1S1|0]|1]¢ /1\
0 S 0

Parsetreeof 01110: { ¢ 7

1

CFGs and recursively-defined sets of strings

* A CFG with the start symbol S as its only variable
recursively defines the set of strings of terminals that
S can generate

« A CFG with more than one variable is a simultaneous
recursive definition of the sets of strings generated by
each of its variables

— Sometimes necessary to use more than one

building precedence in simple arithmetic expressions

 E - expression (start symbol)

e T—term F-—factor |-identifier N - number
E — T|E+T
T — F|F*T
F > (E)|I|N
| > x|y|z
N ->0|1]2|3|4|5|6|7|8]|°9

Backus-Naur form (same as CFG)

BNF (Backus-Naur Form) grammars

— Originally used to define programming languages
— Variables denoted by long names in angle brackets, e.g.
<identifier>, <if-then-else-statement>,
<assignment-statement>, <condition>
::= used instead of —

BNF for C

statement:
((identifier | "case™ constant-expression | "default™) ":")¥
(expression? ";" |
block |
"1f" " (" expression ")" statement |
"if" " (" expression ")" statement "else™ statement |
"switch" " (" expression ")" statement |
"while™ " (" expression ")" statement |
"do" statement "while"™ " (" expression ")}" ";" |
"for™ "(" expression? ";" expression? ";" expression? ")" statement |

"o, v |

"goto™ identifier ";
ﬂcc‘ntinueﬂ '|'I;'|'I |
flbreak'ﬂ Ifl;'" |

"return" expression?

mn AL

l

block: "{" declaration* statement®* ™}"

expression:
assignment-expression

assignment-expression: |

unary-expression |
IfI:'" | m *:TI | 'FIIIIII':TI | ” %:TI | '"+:'" '"_:'FI | TI{{:TI | TI}}_:TI | ”n &:TI

L, — |) | m | — T

)

}* conditional-expression

conditional-expression:
logical-OR-expression ("?" expression ":" conditional-expression)?

parse trees

Back to middle school:
<sentence>::=<noun phrase><verb phrase>
<noun phrase>::==<article><adjective><noun>
<verb phrase>::=<verb><adverb>|<verb><object>
<object>::=<noun phrase>

Parse:

The yellow duck squeaked loudly
The red truck hit a parked car

finite state machines

States
Transitions on inputs
Start state and final states

The language recognized by a machine is the set of
strings that reach a final state

State 0 1
S, S, S
S So S,
S2 So S3
S3 S3 S3

applications of FSMs (aka finite automata)

Implementation of reqular expression matching in
programs like grep

Control structures for sequential logic in digital circuits

Algorithms for communication and cache-coherence
protocols
— Each agent runs its own FSM

Design specifications for reactive systems
— Components are communicating FSMs

applications of FSMs (aka finite automata)

 Formal verification of systems
— Is an unsafe state reachable?

« Computer games
— FSMs provide worlds to explore

 Minimization algorithms for FSMs can be extended to
more general models used in

— Text prediction
— Speech recognition

what language does this machine recognize?

can we recognize these languages with DFAs?

* 0
%

« {x€{0,1}*: len(x) > 1}

FSM that accepts binary strings with a 1 three positions from the end

strings over {0, 1, 2}*

M,: Strings with an even number of 2's

> ()

M,: Strings where the sum of digits mod 3 is 0

O,
>® ()

both: even number of 2's and sum mod 3=0

DFA that accepts strings of a’s, b’s, ¢c's with no more than 3 a's

“Remember the last three bits” 3 bit shift reqgister

10

)

101

