cse 311: foundations of computing

Fall 2015
Lecture 21: Context-free grammars and finite state machines

- All binary strings that have at least one 1 .
- All binary strings that have an even \# of 1's
- All binary strings that don't contain 101

limitations of regular expressions

- Not all languages can be specified by regular expressions
- Even some easy things like
- Palindromes
- Strings with equal number of 0's and 1's
- But also more complicated structures in programming languages
- Matched parentheses
- Properly formed arithmetic expressions
- etc.

context-free grammars

- A Context-Free Grammar (CFG) is given by a finite set of substitution rules involving
- A finite set V of variables that can be replaced
- Alphabet Σ of terminal symbols that can't be replaced
- One variable, usually S , is called the start symbol
- The rules involving a variable \mathbf{A} are written as

$$
A \rightarrow w_{1}\left|w_{2}\right| \cdots \mid w_{k}
$$

where each w_{i} is a string of variables and terminals:

$$
\mathrm{w}_{\mathrm{i}} \in(\mathbf{V} \cup \Sigma)^{*}
$$

how CFGs generate strings

- Begin with start symbol S
- If there is some variable \mathbf{A} in the current string you can replace it by one of the w's in the rules for A
$-A \rightarrow w_{1}\left|w_{2}\right| \cdots \mid w_{k}$
- Write this as $x A y \Rightarrow w_{1} y$
- Repeat until no variables left
- The set of strings the CFG generates are all strings produced in this way that have no variables

Example:
 $\mathrm{S} \rightarrow$ OSO \mid 1S1 \| $0|1| \varepsilon$

Example: $\quad \mathbf{S} \rightarrow$ OS $|\mathbf{S} 1| \varepsilon$

Grammar for $\left\{0^{n} 1^{n}: n \geq 0\right\}$
(all strings with same \# of 0's and 1's with all 0's before 1's)

Example: Grammar for Matched Paranthesis $\Sigma=\{()$,$\} .$

simple arithmetic expressions

$$
\begin{gathered}
E \rightarrow \mathbf{E + E}|\mathbf{E} * E|(\mathbf{E})|x| y|z| 0|1| 2|3| 4 \\
\quad|5| 6|7| 8 \mid 9
\end{gathered}
$$

Generate $(2 * x)+y$

Generate $x+y * z$ in two fundamentally different ways

parse trees

Suppose that grammar G generates a string x
A parse tree of x for G has

- Root labeled S (start symbol of G)
- The children of any node labeled A are labeled by symbols of w left-to-right for some rule $\mathrm{A} \rightarrow \mathrm{w}$
- The symbols of x label the leaves ordered left-to-right

$$
\mathbf{S} \rightarrow \text { OS0 } \mid \text { 1S1 | } 0|1| \varepsilon
$$

Parse tree of 01110:

CFGs and recursively-defined sets of strings

- A CFG with the start symbol S as its only variable recursively defines the set of strings of terminals that S can generate
- A CFG with more than one variable is a simultaneous recursive definition of the sets of strings generated by each of its variables
- Sometimes necessary to use more than one
- E - expression (start symbol)
- T-term \mathbf{F}-factor \mathbf{I}-identifier \mathbf{N} - number

$$
\begin{aligned}
& \mathbf{E} \rightarrow \mathbf{T} \mid \mathbf{E + T} \\
& \mathbf{T} \rightarrow \mathbf{F} \mid \mathbf{F} * \mathbf{T} \\
& \mathbf{F} \rightarrow(\mathbf{E})|\mathbf{I}| \mathbf{N} \\
& \mathbf{I} \rightarrow \mathrm{x}|\mathrm{y}| z \\
& \mathbf{N} \rightarrow 0|1| 2|3| 4|5| 6|7| 8 \mid 9
\end{aligned}
$$

Backus-Naur form (same as CFG)

BNF (Backus-Naur Form) grammars

- Originally used to define programming languages
- Variables denoted by long names in angle brackets, e.g.
<identifier>, <if-then-else-statement>,
<assignment-statement>, <condition>
$::=$ used instead of \rightarrow

```
statement:
    ((identifier | "case" constant-expression | "default") ":")*
    (expression? ";" |
        block |
        "if" "(" expression ")" statement |
        "if" "(" expression ")" statement "else" statement |
        "switch" "(" expression ")" statement |
        "while" "(" expression ")" statement |
        "do" statement "while" "(" expression ")" ";" |
        "for" "(" expression? ";" expression? ";" expression? ")" statement |
        "goto" identifier ";" |
        "continue" ";" |
        "break" ";" |
        "return" expression? ";"
    )
block: "{" declaration* statement* "}"
expression:
    assignment-expression%
assignment-expression: (
            unary-expression (
            "=" | "*=" | "/=" | "%=" | "+=" | "-=" | "<<=" | ">>=" | "&=" |
            "^=" | "|="
        )
    )* conditional-expression
conditional-expression:
    logical-OR-expression ( "?" expression ":" conditional-expression )?
```


parse trees

Back to middle school:
<sentence>::=<noun phrase><verb phrase>
<noun phrase>::==<article><adjective><noun>
<verb phrase>::=<verb><adverb>|<verb><object>
<object>::=<noun phrase>
Parse:
The yellow duck squeaked loudly
The red truck hit a parked car

finite state machines

- States
- Transitions on inputs
- Start state and final states
- The language recognized by a machine is the set of strings that reach a final state

State	0	1
$\mathrm{~s}_{0}$	$\mathrm{~s}_{0}$	$\mathrm{~s}_{1}$
$\mathrm{~s}_{1}$	$\mathrm{~s}_{0}$	$\mathrm{~s}_{2}$
$\mathrm{~s}_{2}$	$\mathrm{~s}_{0}$	$\mathrm{~s}_{3}$
$\mathrm{~s}_{3}$	$\mathrm{~S}_{3}$	$\mathrm{~s}_{3}$

applications of FSMs (aka finite automata)

- Implementation of regular expression matching in programs like grep
- Control structures for sequential logic in digital circuits
- Algorithms for communication and cache-coherence protocols
- Each agent runs its own FSM
- Design specifications for reactive systems
- Components are communicating FSMs

applications of FSMs (aka finite automata)

- Formal verification of systems
- Is an unsafe state reachable?
- Computer games
- FSMs provide worlds to explore
- Minimization algorithms for FSMs can be extended to more general models used in
- Text prediction
- Speech recognition
what language does this machine recognize?

- \varnothing
- Σ^{*}
- $\left\{x \in\{0,1\}^{*}: \operatorname{len}(x)>1\right\}$

FSM that accepts binary strings with a 1 three positions from the end
M_{1} : Strings with an even number of 2's

M_{2} : Strings where the sum of digits $\bmod 3$ is 0

3 bit shift register

