cse 311: foundations of computing

Fall 2015
Lecture 20: Regular expressions and context-free grammars

Tl
%hﬁ’ Ly

)

KD

size vs. height

Claim: For every rooted binary tree T, size(T) < 2height(T)+1 _ 1

cse 311: foundations of computing

Fall 2015
Lecture 20: Regqular expressions and context-free grammars

languages: sets of strings

Sets of strings that satisfy special properties are called languages.

Examples:
— English sentences
— Syntactically correct Java/C/C++ programs
— X* = All strings over alphabet X
— Palindromes over X
— Binary strings that don't have a 0 aftera 1
— Legal variable names, keywords in Java/C/C++
— Binary strings with an equal # of 0'sand 1's

regular expressions

Regular expressions over >

« Basis:

@, € are regular expressions
ais aregular expression forany a € ©

 Recursive step:
— If A and B are reqular expressions then so are:
(AU B)
(AB)
A*

each regular expression is a “pattern”

& matches the empty string
a matches the one character string a

(A U B) matches all strings that either A matches or B
matches (or both)

(AB) matches all strings that have a first part that A
matches followed by a second part that B matches

A* matches all strings that have any number of strings
(even 0) that A matches, one after another

examples

001*

0*1*

(0u1)0(0 U T1)0
(0%7%)*

00U 1)*0110 (0L 1)*

(00 L 11)*

regular expressions 1n practice

Used to define the “tokens”: e.g., legal variable names,
keywords in programming languages and compilers

Used in grep, a program that does pattern matching
searches in UNIX/LINUX

Pattern matching using regular expressions is an essential
feature of PHP

We can use reqular expressions in programs to process
strings!

regular expressions in Java

* Pattern p = Pattern.compile("a*b");
* Matcher m = p.matcher("aaaaab");

* boolean b = m.matches();
[01] aOoral “startofstring $ end ofstring

[0-9] anysingledigit \. period \, comma \- minus
any single character
ab a followed by b (AB)

(a|b) aorb (A U B)
a? zero or one of a (AU €)
ax* zero or moreofa A*

a+ one or more of a AA*

* eg ~[\-+1?[0-9]*(\.[|\,)?[0-9]+S
General form of decimal number e.g. 9.12 or -9,8 (Europe)

matching email addresses: RFC 822

(2o {20\ m) 2 NE]I* (TP 2o [)@, ;o ANTONIN] NO00-%031]+({2: (2= {2\ \n) 7[\t]
P INELCE=S I OB, 2 AW N AT I I 02 DN N AT AL 02 (P eAshm) P NE]D D *™ (7 (7
WA T NI N LT N 0T TR T ONET (T [0 REE, 2 o NN ONIA] NOOOD-N03L]+ (T
FoATAR T ONEDNAINE LTSI O 2@, s AT N TN T D I AN AL LT (2 s m) B [
METIRPETOT TN P ONEDDFIIFEA(T (T oA Am) P ONED MR {T o[(=B, AN UM [N NDOO-ND
FL]H0Z 020N) P OMNEDHINE N OP= NI O =B, AN NN DI NN INT AT NN) N
TEFeqZehohm) 20 NETD*) 02 eho (20 02aATAD) 2] NE]) * (2 [() <»@, 7t AN [N A000-%031]+
P 7o 0P eACAm) 20 NEDDHINEL TS IN D™ O =@, 2t AN NN T I N DD N NI AN T AN %N (2
(Fehehm) 20 NEDD*)) * 1022 [~ 00 <=@, pr WA LN N NDOO-%031]+ (22 (27: {2:hchm) 7] ME]D+INE
P 2= N ™) =B, s NN DN T T D" 2 DN AN T I T (20 02 ehehm) 20 NEDD) *™ (22 (72hrhn)
FLONEDIFI RN (T 0T oNTAm) B ONE]D R i@(T [0 <FE, o AT ONIN] NDOD-ND3L]H (T (T (TN
o) P0ONEDDHINE L O O 28, A N INT DD L IN DO NI IS AT AN L AT (7 022 7 [
NETIFN 0T AL 0P e AEAmD P NEDY R (T [N 0D B, 2o ANTONN] NOOO-NO31]+ (7 (7 (P2he\n)
FLOANEDNHIAEL (F= 0N D™ (=@, 2 o AN NI T IND O DN NI AN DAL =T (22 (2 e m) 2 At
PEYIFCT L B0 0T NTAT) L ONE] D FOT N0 @, s s AN [N AO0O=ND3L]+ (T (T (Frhrhn) T
NEIIAHINE N (RN O <2, 2 W NVINT T DN OE N INIAT AN AN N (2 (22 hahm) 3 NEDD Y
PO 07 (7o) 20 NEDD ([0 <@, 2o AN N [N] NOOO=N031]+ (2 (72070 n) 7 AE]
FHIAENCE= NI O <=8, 2 o AW N INT IO DN OSSN IANTAT AT I * N (2 (2 ehrhm) 2 AE]D %)) ¥*)
(P (TaNTARYTL ONE]IFPRIATI[NODERA@, ;o ANTLN[N] NDOO=NO3L]H(T: (T (Tohrhn) T NE]DE
IWEDE=IN ™ () ==B, oA NN DD DI (2 DN NN T2 (2) 20 NED D) *" (72 (7N
Wad T ONE]IE) (T hL (T (TNEND) P ONED) F (T[N 00 EEE, 2o WALV [N] NODO=N031]+ ({7 (7 (7
Nehnd P ONEDIAINEL (2= NI O =0, 2o AT NN T T N I [N NN TP (2N) P AE
VY= g2 (2N Nn) 70 ACEIF*D) *@{F 07 NT AR P NE]DE AT (N0 <2, 2 AN O[N] NDDO-Y031
JH0Za 2o 07evm) 20 AR HINE N CT=IN I O 2B, s a NV NN I D INTCDA NI AT AN T AN %N
Fr0TaNEANn) T ONEDD D (TN (T [FaNEAm) P ONEDD (T[N 0) <A, 2o AT O[N] ANDDD-NO31] (7
RN A A R S R R AN e A R S P R A NN RS D R A AT RSN AN AR E RS EAY N]
AEAR)FL ONEDDERIENF(T 0T NENR) PL ONED D ERN N LT 002, o NN ONN] ANDOO-NO3L]+ Fe (T
TUTNTAR) T ONEDIHINEL (TSN IO R E, s AN TN D I T NN T AL D (7 (P2 hehn)
[SEIND*™ (2o (ZeNcAm) 20 MEDID =D e 2o {2eN\m) 7] NED) %02 (2o (2 [~ 0) <=8, 7 A" [N
WOOO=NO3L]+ (P (P (7:hehm) 70 NEDVHINED (2= [N [00 <m@, AN NIV T D™ 07 [MA" e)
WA EZa 07N) P ONET DI FT O F s 0T NAR) T ONE] D FD AT N (T (TaNTAn) T ONE])R [()=
Byt WM IN] NDOO=-NDILTH (2 (22 (20 \m) 20 NEDIDHINE (=N (0 <@, ;oW NINT DY) ™
2o DN NN IS (200220 hm) 20 NEDD) *™ (20 (P2) P NEIDS))CE(?:(7:NChn) B[Nt
PRI B, o AT O] NOOO-NO3L (T (T 0PN Nn) P ONEDNHINE (TSI A, 5 0NN
ONIATIR IR IR I L EN T (T P) T NEDD) (TN (P (T Nm) T NE]D R(T
T[A 0 EEE, S AATONIN] NDDO=NDIL] (T (T (2ATAR) B NEDDHIN =] FEANA
VIOV INDCEAN INIAEAAT I * N (22 (2 AT \m) 2 x:],*,m{?_.[whélg!dﬁmﬁ&téd comments?

MOBTIH (7 (7 (2T Am) 70 NEDFHINEN (2= N[O <28, 2o AV A INI DD DI (7 s AN AN |

more examples

« All binary strings that have at least one 1.

« All binary strings that have an even # of 1's

« All binary strings that don’t contain 101

limitations of reqular expressions

* Not all languages can be specified by reqular
expressions

 Even some easy things like
— Palindromes
— Strings with equal number of 0's and 1's

 But also more complicated structures in programming languages
— Matched parentheses
— Properly formed arithmetic expressions
— etc.

context-free grammars

« A Context-Free Grammar (CFG) is given by a finite set
of substitution rules involving

— A finite set V of variables that can be replaced
— Alphabet X of terminal symbols that can't be replaced
— One variable, usually S, is called the start symbol

 The rules involving a variable A are written as
A—>w, | wy|-|w,
where each w; is a string of variables and terminals:
w e (Vu)

how CFGs generate strings

* Begin with start symbol S

* |f there is some variable A in the current string you can
replace it by one of the w's in the rules for A
— A-> W, | Wy |- |w
— Write thisas xAy = xwy
— Repeat until no variables left

 The set of strings the CFG generates are all strings
produced in this way that have no variables

example

Example: S—>0S0|1S1|0|1]|¢

Example: S—>0S|S1]|c¢

example

Grammar for {0"1™:n > 0}
(all strings with same # of 0's and 1's with all 0's before 1's)

Example: S —(S)|SS|¢

simple arithmetic expressions

E— E+E|[E<E|(E)|x|y|z|0]|1]2]|34
|516]171819

Generate (2xx)+y

Generate x+y=*z In two fundamentally different ways

parse trees

Suppose that grammar G generates a string x
A parse tree of x for G has
— Root labeled S (start symbol of G)

— The children of any node labeled A are labeled by symbols of w
left-to-right for some rule A — w

— The symbols of x label the leaves ordered left-to-right

S
S >0S0|1S1|0]|1]¢ /1\
0 S 0

Parsetreeof 01110: { ¢ 7

1

CFGs and recursively-defined sets of strings

* A CFG with the start symbol S as its only variable
recursively defines the set of strings of terminals that
S can generate

« A CFG with more than one variable is a simultaneous
recursive definition of the sets of strings generated by
each of its variables

— Sometimes necessary to use more than one

building precedence in simple arithmetic expressions

 E - expression (start symbol)

e T—term F-—factor |-identifier N - number
E — T|E+T
T — F|F*T
F > (E)|I|N
| > x|y|z
N ->0|1]2|3|4|5|6|7|8]|°9

Backus-Naur form (same as CFG)

BNF (Backus-Naur Form) grammars

— Originally used to define programming languages
— Variables denoted by long names in angle brackets, e.g.
<identifier>, <if-then-else-statement>,
<assignment-statement>, <condition>
::= used instead of —

BNF for C

statement:
((identifier | "case™ constant-expression | "default™) ":")¥
(expression? ";" |
block |
"1f" " (" expression ")" statement |
"if" " (" expression ")" statement "else™ statement |
"switch" " (" expression ")" statement |
"while™ " (" expression ")" statement |
"do" statement "while"™ " (" expression ")}" ";" |
"for™ "(" expression? ";" expression? ";" expression? ")" statement |

"o, v |

"goto™ identifier ";
ﬂcc‘ntinueﬂ '|'I;'|'I |
flbreak'ﬂ Ifl;'" |

"return" expression?

mn AL

l

block: "{" declaration* statement®* ™}"

expression:
assignment-expression

assignment-expression: |

unary-expression |
IfI:'" | m *:TI | 'FIIIIII':TI | ” %:TI | '"+:'" '"_:'FI | TI{{:TI | TI}}_:TI | ”n &:TI

L, — |) | m | — T

)

}* conditional-expression

conditional-expression:
logical-OR-expression ("?" expression ":" conditional-expression)?

parse trees

Back to middle school:
<sentence>::=<noun phrase><verb phrase>
<noun phrase>::==<article><adjective><noun>
<verb phrase>::=<verb><adverb>|<verb><object>
<object>::=<noun phrase>

Parse:

The yellow duck squeaked loudly
The red truck hit a parked car

