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size vs. height

Claim: For every rooted binary tree T, size(T) < 2height(T)+1 _ 1
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languages: sets of strings

Sets of strings that satisfy special properties are called languages.

Examples:
— English sentences
— Syntactically correct Java/C/C++ programs
— X* = All strings over alphabet X
— Palindromes over X
— Binary strings that don't have a 0 aftera 1
— Legal variable names, keywords in Java/C/C++
— Binary strings with an equal # of 0'sand 1's



regular expressions

Regular expressions over >

« Basis:

@, € are regular expressions
ais aregular expression forany a € ©

 Recursive step:
— If A and B are reqular expressions then so are:
(AU B)
(AB)
A*



each regular expression is a “pattern”

& matches the empty string
a matches the one character string a

(A U B) matches all strings that either A matches or B
matches (or both)

(AB) matches all strings that have a first part that A
matches followed by a second part that B matches

A* matches all strings that have any number of strings
(even 0) that A matches, one after another



examples

001*

0*1*

(0u1)0(0 U T1)0
(0%7%)*

00U 1)*0110 (0L 1)*

(00 L 11)*



regular expressions 1n practice

Used to define the “tokens”: e.g., legal variable names,
keywords in programming languages and compilers

Used in grep, a program that does pattern matching
searches in UNIX/LINUX

Pattern matching using regular expressions is an essential
feature of PHP

We can use reqular expressions in programs to process
strings!



regular expressions in Java

* Pattern p = Pattern.compile("a*b");
* Matcher m = p.matcher("aaaaab");

* boolean b = m.matches();
[01] aOoral “startofstring $ end ofstring

[0-9] anysingledigit \. period \, comma \- minus
any single character
ab a followed by b (AB)

(a|b) aorb (A U B)
a? zero or one of a (AU €)
ax* zero or moreofa  A*

a+ one or more of a AA*

* eg ~[\-+1?[0-9]*(\.[|\,)?[0-9]+S
General form of decimal number e.g. 9.12 or -9,8 (Europe)



matching email addresses: RFC 822
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more examples

« All binary strings that have at least one 1.

« All binary strings that have an even # of 1's

« All binary strings that don’t contain 101



limitations of reqular expressions

* Not all languages can be specified by reqular
expressions

 Even some easy things like
— Palindromes
— Strings with equal number of 0's and 1's

 But also more complicated structures in programming languages
— Matched parentheses
— Properly formed arithmetic expressions
— etc.



context-free grammars

« A Context-Free Grammar (CFG) is given by a finite set
of substitution rules involving

— A finite set V of variables that can be replaced
— Alphabet X of terminal symbols that can't be replaced
— One variable, usually S, is called the start symbol

 The rules involving a variable A are written as
A—>w, | wy|-|w,
where each w; is a string of variables and terminals:
w e (Vu)



how CFGs generate strings

* Begin with start symbol S

* |f there is some variable A in the current string you can
replace it by one of the w's in the rules for A
— A-> W, | Wy |- |w
— Write thisas xAy = xwy
— Repeat until no variables left

 The set of strings the CFG generates are all strings
produced in this way that have no variables



example

Example: S—>0S0|1S1|0|1]|¢

Example: S—>0S|S1]|c¢



example

Grammar for {0"1™:n > 0}
(all strings with same # of 0's and 1's with all 0's before 1's)

Example: S —(S)|SS|¢



simple arithmetic expressions

E— E+E|[E<E|(E)|x|y|z|0]|1]2]|34
|516]171819

Generate (2xx)+y

Generate x+y=*z In two fundamentally different ways



parse trees

Suppose that grammar G generates a string x
A parse tree of x for G has
— Root labeled S (start symbol of G)

— The children of any node labeled A are labeled by symbols of w
left-to-right for some rule A — w

— The symbols of x label the leaves ordered left-to-right

S
S >0S0|1S1|0]|1]¢ /1\
0 S 0

Parsetreeof 01110:  { ¢ 7

1



CFGs and recursively-defined sets of strings

* A CFG with the start symbol S as its only variable
recursively defines the set of strings of terminals that
S can generate

« A CFG with more than one variable is a simultaneous
recursive definition of the sets of strings generated by
each of its variables

— Sometimes necessary to use more than one



building precedence in simple arithmetic expressions

 E - expression (start symbol)

e T—term F-—factor |-identifier N - number
E — T|E+T
T — F|F*T
F > (E)|I|N
| > x|y|z
N ->0|1]2|3|4|5|6|7|8]|°9



Backus-Naur form (same as CFG)

BNF (Backus-Naur Form) grammars

— Originally used to define programming languages
— Variables denoted by long names in angle brackets, e.g.
<identifier>, <if-then-else-statement>,
<assignment-statement>, <condition>
::= used instead of —



BNF for C

statement:
((identifier | "case™ constant-expression | "default™) ":")¥
(expression? ";" |
block |
"1f" " (" expression ")" statement |
"if" " (" expression ")" statement "else™ statement |
"switch" " (" expression ")" statement |
"while™ " (" expression ")" statement |
"do" statement "while"™ " (" expression ")}" ";" |
"for™ "(" expression? ";" expression? ";" expression? ")" statement |

"o, v |

"goto™ identifier ";
ﬂcc‘ntinueﬂ '|'I;'|'I |
flbreak'ﬂ Ifl;'" |

"return" expression?

mn AL

l

block: "{" declaration* statement®* ™}"

expression:
assignment-expression

assignment-expression: |

unary-expression |
IfI:'" | m *:TI | 'FIIIIII':TI | ” %:TI | '"+:'" '"_:'FI | TI{{:TI | TI}}_:TI | ”n &:TI

L, — | ) | m | — T

)

}* conditional-expression

conditional-expression:
logical-OR-expression ( "?" expression ":" conditional-expression )?



parse trees

Back to middle school:
<sentence>::=<noun phrase><verb phrase>
<noun phrase>::==<article><adjective><noun>
<verb phrase>::=<verb><adverb>|<verb><object>
<object>::=<noun phrase>

Parse:

The yellow duck squeaked loudly
The red truck hit a parked car



