
cse 311: foundations of computing

Fall 2015
Lecture 20: Regular expressions and context-free grammars

size vs. height

Claim: For every rooted binary tree 𝑇, size 𝑇 ≤ 2height 𝑇 +1 − 1

cse 311: foundations of computing

Fall 2015
Lecture 20: Regular expressions and context-free grammars

languages: sets of strings

Sets of strings that satisfy special properties are called languages.

Examples:
– English sentences
– Syntactically correct Java/C/C++ programs
– * = All strings over alphabet 
– Palindromes over 
– Binary strings that don’t have a 0 after a 1
– Legal variable names, keywords in Java/C/C++
– Binary strings with an equal # of 0’s and 1’s

regular expressions

Regular expressions over 

• Basis:
 ,  are regular expressions
 a is a regular expression for any a  

• Recursive step:
– If A and B are regular expressions then so are:

(A  B)
(AB)
A*

each regular expression is a “pattern”

 matches the empty string

a matches the one character string a

(A  B) matches all strings that either A matches or B
matches (or both)

(AB) matches all strings that have a first part that A
matches followed by a second part that B matches

A* matches all strings that have any number of strings
(even 0) that A matches, one after another

examples

• 001*

• 0*1*

• (0  1)0(0  1)0

• (0*1*)*

• (0  1)* 0110 (0  1)*

• (00  11)*

regular expressions in practice

• Used to define the “tokens”: e.g., legal variable names,
keywords in programming languages and compilers

• Used in grep, a program that does pattern matching
searches in UNIX/LINUX

• Pattern matching using regular expressions is an essential
feature of PHP

• We can use regular expressions in programs to process
strings!

regular expressions in Java

• Pattern p = Pattern.compile("a*b");

• Matcher m = p.matcher("aaaaab");

• boolean b = m.matches();

[01] a 0 or a 1 ^ start of string $ end of string

[0-9] any single digit \. period \, comma \- minus

. any single character

ab a followed by b (AB)

(a|b) a or b (A  B)
a? zero or one of a (A  ℇ)
a* zero or more of a A*

a+ one or more of a AA*

• e.g. ^[\-+]?[0-9]*(\.|\,)?[0-9]+$

 General form of decimal number e.g. 9.12 or -9,8 (Europe)

matching email addresses: RFC 822

more examples

• All binary strings that have at least one 1.

• All binary strings that have an even # of 1’s

• All binary strings that don’t contain 101

limitations of regular expressions

• Not all languages can be specified by regular
expressions

• Even some easy things like
– Palindromes
– Strings with equal number of 0’s and 1’s

• But also more complicated structures in programming languages
– Matched parentheses
– Properly formed arithmetic expressions
– etc.

context-free grammars

• A Context-Free Grammar (CFG) is given by a finite set
of substitution rules involving
– A finite set V of variables that can be replaced
– Alphabet  of terminal symbols that can’t be replaced
– One variable, usually S, is called the start symbol

• The rules involving a variable A are written as
 A  w1 | w2 | ⋯ | wk
where each wi is a string of variables and terminals:
 wi ∈ (V  )*

how CFGs generate strings

• Begin with start symbol S

• If there is some variable A in the current string you can
replace it by one of the w’s in the rules for A
– A  w1 | w2 | ⋯ | wk
– Write this as xAy ⇒ xwy
– Repeat until no variables left

• The set of strings the CFG generates are all strings

produced in this way that have no variables

example

Example: S  0S0 | 1S1 | 0 | 1 | 

Example: S  0S | S1 | 

example

Grammar for 0𝑛1𝑛: 𝑛 ≥ 0
(all strings with same # of 0’s and 1’s with all 0’s before 1’s)

Example: S  (S) | SS | 

simple arithmetic expressions

E  E+E | E∗E | (E) | x | y | z | 0 | 1 | 2 | 3 | 4
 | 5 | 6 | 7 | 8 | 9

 Generate (2∗x) + y

Generate x+y∗z in two fundamentally different ways

parse trees

Suppose that grammar G generates a string x
 A parse tree of x for G has

– Root labeled S (start symbol of G)
– The children of any node labeled A are labeled by symbols of w

left-to-right for some rule A  w
– The symbols of x label the leaves ordered left-to-right

S  0S0 | 1S1 | 0 | 1 | 
S

0 0 S

S 1 1

1

Parse tree of 01110:

CFGs and recursively-defined sets of strings

• A CFG with the start symbol S as its only variable
recursively defines the set of strings of terminals that
S can generate

• A CFG with more than one variable is a simultaneous

recursive definition of the sets of strings generated by
each of its variables
– Sometimes necessary to use more than one

building precedence in simple arithmetic expressions

• E – expression (start symbol)

• T – term F – factor I – identifier N - number

E  T | E+T

T  F | F∗T

F  (E) | I | N

I  x | y | z

N  0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Backus-Naur form (same as CFG)

BNF (Backus-Naur Form) grammars

– Originally used to define programming languages
– Variables denoted by long names in angle brackets, e.g.

<identifier>, <if-then-else-statement>,
<assignment-statement>, <condition>
 ∷= used instead of 

BNF for C

parse trees

Back to middle school:
 <sentence>∷=<noun phrase><verb phrase>
 <noun phrase>∷==<article><adjective><noun>
 <verb phrase>∷=<verb><adverb>|<verb><object>
 <object>∷=<noun phrase>

Parse:
 The yellow duck squeaked loudly
 The red truck hit a parked car

