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size vs. height 

Claim:  For every rooted binary tree 𝑇, size 𝑇 ≤ 2height 𝑇 +1 − 1  
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languages:  sets of strings 

Sets of strings that satisfy special properties are called languages.   

Examples: 
– English sentences 
– Syntactically correct Java/C/C++ programs 
– * = All strings over alphabet   
– Palindromes over   
– Binary strings that don’t have a 0 after a 1 
– Legal variable names, keywords in Java/C/C++ 
– Binary strings with an equal # of 0’s and 1’s 



regular expressions 

Regular expressions over  

•  Basis: 
   ,  are regular expressions 
   a is a regular expression for any a   

• Recursive step: 
– If A and B are regular expressions then so are: 

(A  B) 
(AB) 
A* 

 
 

 



each regular expression is a “pattern” 

 matches the empty string 

a matches the one character string a 

(A  B) matches all strings that either A matches or B 
matches (or both) 

(AB) matches all strings that have a first part that A 
matches followed by a second part that B matches 

A* matches all strings that have any number of strings 
(even 0) that A matches, one after another 

 



examples 

• 001*    

• 0*1* 

• (0  1)0(0  1)0            

• (0*1*)* 

• (0  1)* 0110 (0  1)* 

• (00  11)*  

 



regular expressions in practice 

• Used to define the “tokens”: e.g., legal variable names, 
keywords in programming languages and compilers 

• Used in grep, a program that does pattern matching 
searches in UNIX/LINUX 

• Pattern matching using regular expressions is an essential 
feature of PHP 

• We can use regular expressions in programs to process 
strings! 



regular expressions in Java 

• Pattern p = Pattern.compile("a*b");  

• Matcher m = p.matcher("aaaaab");  

• boolean b = m.matches(); 

[01]     a 0 or a 1     ^ start of string     $ end of string 

[0-9]   any single digit       \.   period    \,  comma  \- minus 

.           any single character 

ab         a followed by b         (AB) 

(a|b)  a or b                           (A  B) 
a?         zero or one of a         (A  ℇ) 
a*         zero or more of a      A* 

a+         one or more of a      AA*  

• e.g.   ^[\-+]?[0-9]*(\.|\,)?[0-9]+$       

               General form of decimal number  e.g.  9.12  or -9,8 (Europe) 



matching email addresses:  RFC 822 



more examples 

• All binary strings that have at least one 1. 
 
 

• All binary strings that have an even # of 1’s 
 

 
 

• All binary strings that don’t contain 101 



limitations of regular expressions 

• Not all languages can be specified by regular 
expressions 

• Even some easy things like  
– Palindromes 
– Strings with equal number of 0’s and 1’s 

• But also more complicated structures in programming languages 
– Matched parentheses 
– Properly formed arithmetic expressions 
– etc. 

 
 



context-free grammars 

• A Context-Free Grammar (CFG) is given by a finite set 
of substitution rules involving 
– A finite set V of variables that can be replaced 
– Alphabet  of terminal symbols that can’t be replaced 
– One variable, usually S, is called the start symbol 

 

• The rules involving a variable A are written as 
                       A  w1 |  w2 | ⋯ | wk 
where each wi is a string of variables and terminals: 
  wi ∈ (V  )* 



how CFGs generate strings 

• Begin with start symbol S 
 

• If there is some variable A in the current string you can 
replace it by one of the w’s in the rules for A 
–  A  w1 |  w2 | ⋯ | wk 
– Write this as    xAy ⇒ xwy 
– Repeat until no variables left 

 
• The set of strings the CFG generates are all strings 

produced in this way that have no variables 



example 

Example:  S  0S0 | 1S1 | 0 | 1 |  

 

 

 

 

Example:       S  0S | S1 |  



example 

Grammar for 0𝑛1𝑛: 𝑛 ≥ 0  
(all strings with same # of 0’s and 1’s with all 0’s before 1’s) 

 
 
 
Example:       S  (S) | SS |  

 
 
 



simple arithmetic expressions 

E   E+E | E∗E | (E) | x | y | z | 0 | 1 | 2 | 3 | 4  
      | 5 | 6 | 7 | 8 | 9 

 
 Generate  (2∗x) + y  

 
 
 
 
Generate x+y∗z in two fundamentally different ways 
 



parse trees 

Suppose that grammar G generates a string x 
  A parse tree of x for G has 

– Root labeled S (start symbol of G) 
– The children of any node labeled A are labeled by symbols of w 

left-to-right  for some rule A  w 
– The symbols of x label the leaves ordered left-to-right 

S  0S0 | 1S1 | 0 | 1 |  
S 

0 0 S 

S 1 1 

1 

Parse tree of 01110: 



CFGs and recursively-defined sets of strings 

• A CFG with the start symbol S as its only variable 
recursively defines the set of strings of terminals that 
S can generate 

 
• A CFG with more than one variable is a simultaneous 

recursive definition of the sets of strings generated by 
each of its variables 
– Sometimes necessary to use more than one 



building precedence in simple arithmetic expressions 

• E – expression  (start symbol) 

• T – term   F – factor   I – identifier  N - number 

E   T | E+T 

T    F | F∗T 

F    (E) | I | N 

I    x | y | z 

N    0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 



Backus-Naur form (same as CFG) 

BNF (Backus-Naur Form) grammars 

– Originally used to define programming languages 
– Variables denoted by long names in angle brackets, e.g. 

<identifier>, <if-then-else-statement>, 
<assignment-statement>, <condition> 
  ∷=  used instead of   



BNF for C 



parse trees 

Back to middle school: 
  <sentence>∷=<noun phrase><verb phrase> 
  <noun phrase>∷==<article><adjective><noun> 
  <verb phrase>∷=<verb><adverb>|<verb><object> 
  <object>∷=<noun phrase> 

     

Parse:    
 The yellow duck squeaked loudly 
 The red truck hit a parked car 


