cse 311: foundations of computing

Spring 2015

Lecture 19: Structural induction and regular expressions

An alphabet ∑ is any finite set of characters.

e.g.
$$\Sigma = \{0,1\} \text{ or } \Sigma = \{A,B,C,...X,Y,Z\} \text{ or }$$

$$\Sigma = \begin{bmatrix} \frac{1}{2} & \frac{28}{29} & \frac{1}{96} & \frac{95}{154} & \frac{153}{0} & \frac{186}{187} & \frac{1}{229} & \frac{1}{220} \\ \frac{2}{3} & \frac{29}{30} & \frac{96}{122} & \frac{154}{156} & \frac{1}{6} & \frac{186}{189} & \frac{1}{222} & \frac{1}{221} \\ \frac{4}{4} & \frac{31}{31} & \frac{123}{123} & \frac{156}{156} & \frac{1}{6} & \frac{189}{189} & \frac{1}{222} & \frac{1}{222} \\ \frac{5}{4} & \frac{32}{32} & \frac{125}{125} & \frac{1}{58} & \frac{1}{6} & \frac{199}{192} & \frac{1}{222} & \frac{224}{6} & \frac{\alpha}{199} \\ \frac{8}{8} & \frac{1}{33} & \frac{1}{35} & \frac{1}{4} & \frac{127}{127} & \frac{1}{60} & \frac{4}{6} & \frac{193}{193} & \frac{1}{226} & \frac{226}{17} & \frac{1}{9} & \frac{1}{9} & \frac{36}{36} & \frac{8}{5} & \frac{128}{129} & \frac{1}{6} & \frac{161}{163} & \frac{1}{194} & \frac{1}{7} & \frac{227}{227} & \frac{\pi}{10} \\ \frac{1}{10} & \frac{1}{38} & \frac{3}{6} & \frac{130}{130} & \frac{4}{6} & \frac{163}{163} & \frac{1}{9} & \frac{196}{196} & \frac{229}{229} & \frac{\pi}{9} \end{bmatrix}$$

- The set Σ^* of *strings* over the alphabet Σ is defined by
 - **Basis:** ε ∈ Σ * (ε is the empty string)
 - **Recursive:** if $w \in \Sigma^*$, $a \in \Sigma$, then $wa \in \Sigma^*$

function definitions on recursively defined sets

Length:

len
$$(\varepsilon)$$
 = 0;
len (wa) = 1 + len (w) ; for $w \in \Sigma^*$, $a \in \Sigma$

Reversal:

$$\varepsilon^{R} = \varepsilon$$
 $(wa)^{R} = aw^{R} \text{ for } w \in \Sigma^{*}, a \in \Sigma$

Concatenation:

$$x \bullet \varepsilon = x \text{ for } x \in \Sigma^*$$

 $x \bullet wa = (x \bullet w)a \text{ for } x, w \in \Sigma^*, a \in \Sigma$

rooted binary trees

Basis:

- is a rooted binary tree
- Recursive step:

defining a function on rooted binary trees

• size(•) = 1

• size
$$\left(\begin{array}{c} T_1 \\ T_2 \end{array}\right) = 1 + \text{size}(T_1) + \text{size}(T_2)$$

• height(•) = 0

• height
$$(T_1)$$
 = 1 + max{height(T_1), height(T_2)}

How to prove $\forall x \in S, P(x)$ is true:

Base Case: Show that P(u) is true for all specific elements u of S mentioned in the Basis step

Inductive Hypothesis: Assume that *P* is true for some arbitrary values of *each* of the existing named elements mentioned in the *Recursive step*

Inductive Step: Prove that P(w) holds for each of the new elements w constructed in the *Recursive step* using the named elements mentioned in the Inductive Hypothesis

Conclude that $\forall x \in S, P(x)$

structural induction for strings

Let S be a set of strings over $\Sigma = \{a, b\}$ defined by

Basis: $a \in S$

Recursive:

If $w \in S$ then $wa \in S$ and $wba \in S$ If $u, v \in S$ then $uv \in S$

Claim: If $w \in S$ then w has more a's than b's.

proof continued?

prove:
$$len(x \cdot y) = len(x) + len(y)$$
 for all $x, y \in \Sigma^*$

Let P(y) be "len $(x \cdot y) = \text{len}(x) + \text{len}(y)$ for all $x \in \Sigma^*$

```
Length:

len (\mathcal{E}) = 0;

len (wa) = 1 + \text{len}(w); for w \in \Sigma^*, a \in \Sigma
```

defining a function on rooted binary trees

• size(•) = 1

• size
$$\left(\begin{array}{c} T_1 \\ T_2 \end{array}\right) = 1 + \text{size}(T_1) + \text{size}(T_2)$$

• height(•) = 0

• height
$$(T_1)$$
 = 1 + max{height(T_1), height(T_2)}

size vs. height

Claim: For every rooted binary tree T, $size(T) \le 2^{height(T)+1} - 1$

languages: sets of strings

Sets of strings that satisfy special properties are called languages.

Examples:

- English sentences
- Syntactically correct Java/C/C++ programs
- $-\Sigma^*$ = All strings over alphabet Σ
- Palindromes over Σ
- Binary strings that don't have a 0 after a 1
- Legal variable names, keywords in Java/C/C++
- Binary strings with an equal # of 0's and 1's