cse 311: foundations of computing

Spring 2015

Lecture 19: Structural induction and regular expressions

- An alphabet Σ is any finite set of characters.

$$
\begin{aligned}
& \text { ecg. } \quad \Sigma=\{0,1\} \text { or } \Sigma=\{A, B, C, \ldots X, Y, Z\} \text { or }
\end{aligned}
$$

- The set Σ^{*} of strings over the alphabet Σ is defined by
- Basis: $\varepsilon \in \Sigma^{\star}$ (ε is the empty string)
- Recursive: if $w \in \Sigma^{\star}, a \in \Sigma$, then $w a \in \Sigma^{\star}$
$\overline{\Sigma_{1}^{*}}=\Sigma_{i}^{s} \backslash \varepsilon$

$$
\begin{aligned}
& \text { Basis: } \forall a \in \Sigma_{1}, \overline{\Sigma^{*}} \quad \overline{\sum^{*}} \\
& \text { Recur: if } w \in \overline{\sum_{1}^{*}} \text { and } a \in \Sigma^{*} \rightarrow w a \in \sum^{*}
\end{aligned}
$$

function definitions on recursively defined sets

Length:

len $(\varepsilon)=0$;
len $(w a)=1+\operatorname{len}(w)$; for $w \in \Sigma^{*}, a \in \Sigma$
Reversal:

$$
\varepsilon^{R}=\varepsilon
$$

$(w a)^{\mathrm{R}}=a w^{\mathrm{R}}$ for $w \in \Sigma^{\star}, a \in \Sigma$
Concatenation:

$$
\begin{aligned}
x \bullet \varepsilon=x \text { for } x \in \Sigma^{\star} & =\left(x \cdot a_{1}-a_{k-1}\right) a_{k} \\
x \bullet w a=(x \bullet w) a \text { for } x, w & \in \Sigma^{\star}, a \in \Sigma \\
& =\ldots=x a_{1} \cdots a_{k}
\end{aligned}
$$

rooted binary trees

- Basis:
- is a rooted binary tree
- Recursive step:

defining a function on rooted binary trees

- $\operatorname{size}(\cdot)=1$
- $\operatorname{size}\left({ }_{\text {height }}\right.$

- height $(\cdot)=0$
- height $(\underset{\sim}{2}=1$

structural induction

How to prove $\forall x \in S, P(x)$ is true:
Base Case: Show that $P(u)$ is true for all specific elements u of S mentioned in the Basis step

Inductive Hypothesis: Assume that P is true for some arbitrary values of each of the existing named elements mentioned in the Recursive step

Inductive Step: Prove that $P(w)$ holds for each of the new elements w constructed in the Recursive step using the named elements mentioned in the Inductive Hypothesis

Conclude that $\forall x \in S, P(x)$

Let S be a set of strings over $\Sigma=\{a, b\}$ defined by
Basis: $a \in S$
Recursive:
If $w \in S$ then $w a \in S$ and $w b a \in S$
If $u, v \in S$ then $u v \in S$
Claim: If $w \in S$ then w has more a 's than b 's.
$P(w)=" w$ has more a's than b's."
Base Case: Show $P(a)$ holds.

$$
\#_{a}(a)=1>\#_{b}(a)
$$

IH: for some $w, u, v \in S, P(a), P(w), P(v)$ hold.
IS: $\#_{a}(w a)=\# a(w)+1 \sum_{a} \#_{b} b(w)+1>\#_{b}(w a) \Rightarrow P(w a)$ holes.

$$
\#_{a}(w b a)=\#_{a}(w)+1 \geqslant_{\text {LH }}^{\# H^{\prime}(w)+1=\#_{b}(w b a) \Rightarrow P(w b a) \text { hold }}
$$

proof continued?

$$
\begin{aligned}
\#_{a}(u v)=\#_{a}(u)+\#_{a}(v)>\#_{b}(u) & +\#_{b}(v) \\
q_{I H} & =\#_{b}(u v) \\
& \Rightarrow P(u v) \text { holds. }
\end{aligned}
$$

prove: $\operatorname{len}(x \cdot y)=\operatorname{len}(x)+\operatorname{len}(y)$ for all $x, y \in \Sigma^{*}$
Let $P(y)$ be "len $(x \cdot y)=\operatorname{len}(x)+\operatorname{len}(y)$ for all $x \in \Sigma^{*}$
Base case: $P(\varepsilon)$ holds.

$$
\begin{aligned}
\operatorname{lon}(x . \varepsilon) & =\operatorname{len}(x)=\operatorname{len}(x)+\operatorname{len}(\varepsilon) \\
\tau \operatorname{dht} . \quad & \operatorname{dif} \operatorname{len}
\end{aligned}
$$

It, for some $w \in \Sigma^{*}, P(w)$ holds.
IS: Goal. $P(w a)$ holds for any $a \in \sum_{1}$.

$$
\begin{aligned}
& \text { Fix } x \in \sum_{1}^{*} \\
& \operatorname{len}(x, w a)=\operatorname{len}((x, w) a)=\operatorname{len}(x \cdot w)+1 \\
&=\operatorname{def} \cdot f \cdot \\
& \text { It } \rightarrow=\operatorname{len}(x)+\operatorname{len}(w)+1 \\
& \text { che } \ln \rightarrow=\operatorname{len}(x)+\ln (w a)
\end{aligned}
$$

$$
\Rightarrow P(w a) \text { holds } \begin{gathered}
\text { Length: } \\
\text { lIen }
\end{gathered}
$$

conch: $P(y) \quad$ len $(\varepsilon)=0$; len $(w a)=1+\operatorname{len}(w)$; for $w \in \Sigma^{*}, a \in \Sigma$

defining a function on rooted binary trees

- $\operatorname{size}(\cdot)=1$

- height $(\cdot)=0$
- height $(\widehat{\text { ant }}$) $)=1+\max \left(h e i g h t\left(T_{1}\right)\right.$, height $\left.\left(T_{2}\right)\right\}$

Claim: For every rooted binary tree $T, \operatorname{size}(T) \leq 2^{\text {height }(T)+1}-1$

$$
P(T)=" \operatorname{size}(T) \leqslant 2^{\operatorname{height}(T)_{+1}}-1 \text { " }
$$

Base Case: $P(-)$ holds

$$
\begin{aligned}
& P(-)(r)=1 \leqslant 2^{0+1}-1=2^{\text {height }(\cdot)+1}-1
\end{aligned}
$$

size 7

$$
7 \leqslant 2^{2+1}-1
$$

If: $P\left(T_{1}\right), P\left(T_{2}\right)$ hold for some T_{1}, T_{2}
IS: Goal:

$$
\begin{aligned}
& \text { size }\left(T_{3}\right)=1+\operatorname{size}\left(T_{1}\right)+\text { size }\left(T_{2}\right) \leqslant 1_{1} 2^{\text {height }\left(T_{1}\right)+1}-1+2^{\text {height }\left(T_{2}\right)+1}-1 \\
&=2 \cdot\left(2^{\text {hight }\left(T_{1}\right)}+2^{\text {height }\left(T_{2}\right)}\right)-1 \\
&\left.\left.\leqslant 2.2 \cdot 2^{\max (\text { height }} T_{1}\right) \text {, height }\left(T_{2}\right)\right\} \\
&=2 \cdot 2^{\text {height }\left(T_{3}\right)}-1=2^{\text {height }\left(T_{3}\right)+1}-1 \Rightarrow P\left(T_{3}\right)
\end{aligned}
$$

languages: sets of strings

Sets of strings that satisfy special properties are called languages.
Examples:

- English sentences
- Syntactically correct Java/C/C++ programs
$-\Sigma^{*}=$ All strings over alphabet Σ
- Palindromes over Σ
- Binary strings that don't have a 0 after a 1
- Legal variable names, keywords in Java/C/C++
- Binary strings with an equal \# of 0's and 1's

