cse 311: foundations of computing

Spring 2015

Lecture 19: Structural induction and regular expressions

An alphabet ∑ is any finite set of characters.

e.g.
$$\Sigma = \{0,1\} \text{ or } \Sigma = \{A,B,C,...X,Y,Z\} \text{ or }$$

$$\Sigma = \begin{bmatrix} \frac{1}{2} & \frac{28}{29} & \frac{1}{95} & \frac{153}{154} & \frac{0}{11} & \frac{186}{187} & \frac{1}{220} & \frac{219}{187} & \frac{1}{220} & \frac{1}{200} & \frac{$$

- The set Σ^* of *strings* over the alphabet Σ is defined by
 - **Basis:** ε ∈ Σ * (ε is the empty string)
 - **Recursive**: if $w \in \Sigma^*$, $a \in \Sigma$, then $wa \in \Sigma^*$

function definitions on recursively defined sets

Length:

len
$$(\varepsilon)$$
 = 0;
len (wa) = 1 + len (w) ; for $w \in \Sigma^*$, $a \in \Sigma$

Reversal:

$$\varepsilon^{R} = \varepsilon$$
 $(wa)^{R} = aw^{R} \text{ for } w \in \Sigma^{*}, a \in \Sigma$

Concatenation:

ncatenation:
$$x \cdot (a_1 a_2 - a_{le})$$

 $x \cdot \varepsilon = x \text{ for } x \in \Sigma^*$ = $(x, a_1 - a_{le})$
 $x \cdot wa = (x \cdot w)a \text{ for } x, w \in \Sigma^*, a \in \Sigma$

rooted binary trees

root

Basis:

is a rooted binary tree

Recursive step:

are rooted binary trees,

defining a function on rooted binary trees

Basis

• size(•) = 1

• size
$$(T_1, T_2, T_2)$$
 = 1 + size (T_1) + size (T_2)

• height(•) = 0

• height (T_1) = 1 + max{height(T_1), height(T_2)}

How to prove $\forall x \in S, P(x)$ is true:

Base Case: Show that P(u) is true for all specific elements u of S mentioned in the Basis step

Inductive Hypothesis: Assume that *P* is true for some arbitrary values of *each* of the existing named elements mentioned in the *Recursive step*

Inductive Step: Prove that P(w) holds for each of the new elements w constructed in the *Recursive step* using the named elements mentioned in the Inductive Hypothesis

Conclude that $\forall x \in S, P(x)$

structural induction for strings

Let S be a set of strings over $\Sigma = \{a, b\}$ defined by

Basis: $a \in S$

Recursive:

If $w \in S$ then $wa \in S$ and $wba \in S$ If $u, v \in S$ then $uv \in S$

Claim: If $w \in S$ then w has more a's than b's. $P(w) = 11 \quad w$ has more a's than b's.

Base Case P(a) holds because a has more a's than b's. $t \mapsto P(w)$, P(u), P(v) hold for some $w,u,v \in S$ TS. $\#_a(wa) = 1 + \#_a(w) > 1 + \#_b(w) > \#_b(w) \Rightarrow P(wa)$ $\#_a(wba) = 1 + \#_a(w) > 1 + \#_b(w) = \#_b(wba) = P(wba)$

proof continued?

prove: $len(x \cdot y) = len(x) + len(y)$ for all $x, y \in \Sigma^*$

Let P(y) be "len $(x \cdot y) = \text{len}(x) + \text{len}(y)$ for all $x \in \Sigma^*$ Base Case: P(2) halds len(X-E) = len(X) = len(X)+ len(E) t def. t def. t def. IH: P(y) holds for some y E Z* IS: Yac Z, P(ya) holds. Fix XE Z* len (x. ya) = len ((x.y)a) = len (x.y)+1 t del len IH == len (x)+ len(y)+1 = lu(x) + lu(ya) M-files => P(ya) holds Length: len (wa) = 1 + len(w); for $w \in \Sigma^*$, $a \in \Sigma$

defining a function on rooted binary trees

• size(•) = 1

• size
$$\left(\begin{array}{c} T_1 \\ T_2 \end{array}\right) = 1 + \text{size}(T_1) + \text{size}(T_2)$$

• height(•) = 0

• height
$$(T_1)$$
 = 1 + max{height(T_1), height(T_2)}

size vs. height

Claim: For every rooted binary tree T, size $(T) \le 2^{\operatorname{height}(T)+1} - 1$ $P(T) = \text{" size}(T) \le 2^{\operatorname{height}(T)+1}$

$$P(T) =$$
" size(T) $\leq 2^{\text{heigh}}(T) + 1$

Base Case:
$$P(\cdot)$$
 o+1 height(-)+1, size(\cdot)=| ≤ 2 -1=2

languages: sets of strings

Sets of strings that satisfy special properties are called languages.

Examples:

- English sentences
- Syntactically correct Java/C/C++ programs
- $-\Sigma^*$ = All strings over alphabet Σ
- Palindromes over Σ
- Binary strings that don't have a 0 after a 1
- Legal variable names, keywords in Java/C/C++
- Binary strings with an equal # of 0's and 1's