cse 311: foundations of computing

Fall 2015 Lecture 18: Recursively defined sets and structural induction

Four weeks left: What happens now?

The class speeds up a bit. Homework problems get more conceptual.

We will cover:

- Recursively defined sets and functions
- Structural induction
- Regular expressions and context free grammars
- Relations and graphs
- Finite state machines and automata
- Turing machines and undecidability

Will give exams back at the end of class.

Regrade requests: Each problem belongs to a TA

Problem 1	Robbie
Problem 2	Becky / Tim
Problem 3	Jiechen
Problem 4	Sam
Problem 5	lan
Problem 6	Evan

You have to go see the relevant grader.

As usual:

Make sure you understand the problem and your solution.

stressed?

Recursive definition

- **–** Basis step: $0 \in S$
- Recursive step: if $x \in S$, then $x + 2 \in S$
- Exclusion rule: Every element in S follows from basis steps and a finite number of recursive steps

Basis: $6 \in S$; $15 \in S$; Recursive: if $x, y \in S$, then $x + y \in S$;

Basis:
$$[1, 1, 0] \in S, [0, 1, 1] \in S;$$

Recursive:
if $[x, y, z] \in S, \ \alpha \in \mathbb{R}$, then $[\alpha x, \alpha y, \alpha z] \in S$
if $[x_1, y_1, z_1], [x_2, y_2, z_2] \in S$
then $[x_1 + x_2, \ y_1 + y_2, \ z_1 + z_2] \in S$

Powers of 3:

Recursive definition

- *Basis step:* Some specific elements are in *S*
- *Recursive step:* Given some existing named elements in *S* some new objects constructed from these named elements are also in *S*.
- *Exclusion rule*: Every element in *S* follows from basis steps and a finite number of recursive steps

• An *alphabet* Σ is any finite set of characters.

e.g. $\Sigma = \{0,1\}$ or $\Sigma = \{A, B, C, ..., X, Y, Z\}$ or

1		28	L	95		153	Ö	186		219	
2	•	29	**	96	-	154	Ü	187	ī	220	
3	۷	30 🔺		• 97-122:	2a-z	155	55 ¢	188		. 221	ſ
4	٠	31		123	{	156	£	189	R	222	1
5	+	32 (s	pace)	124	ì	157	¥	190	3	223	i.
6	٠	33	Í.	125	Ś	158	Pt	191	1	224	α
7	•	34		126	~	159	f	192	Ĺ	225	ß
8		35	#	127		160	á	193	T	226	Г
9	0	36	S	128	C	161	í	194	т	227	π
10	0	37	%	129	ů	162	ó	195	÷	228	Σ
11	ď	38	&	130	é	163	ú	196	-	229	σ

- The set Σ^* of *strings* over the alphabet Σ is defined by
 - **Basis:** $\mathcal{E} \in \Sigma^*$ (\mathcal{E} is the empty string)
 - **Recursive:** if $w \in \Sigma^*$, $a \in \Sigma$, then $wa \in \Sigma^*$

Palindromes are strings that are the same backwards and forwards.

Basis:

 \mathcal{E} is a palindrome and any $a \in \Sigma$ is a palindrome

Recursive step:

If *p* is a palindrome then apa is a palindrome for every $a \in \Sigma$.

First digit cannot be a 1.

* No occurrence of the substring 11.

function definitions on recursively defined sets

Length: len $(\varepsilon) = 0$; len (wa) = 1 + len(w); for $w \in \Sigma^*, a \in \Sigma$

Reversal:

$$\varepsilon^{R} = \varepsilon$$

 $(wa)^{R} = aw^{R}$ for $w \in \Sigma^{*}$, $a \in \Sigma$

Concatenation:

$$x \bullet \varepsilon = x \text{ for } x \in \Sigma^*$$

$$x \bullet wa = (x \bullet w)a \text{ for } x, w \in \Sigma^*, a \in \Sigma$$

function definitions on recursively defined sets

Number of vowels in a string: $\Sigma = \{a, b, c, \dots, z\}$ $\mathcal{V} = \{a, e, i, o, u\}$

rooted binary trees

- Basis:
 is a rooted binary tree
- Recursive step:

rooted binary trees

- Basis:
 is a rooted binary tree
- Recursive step:

defining a function on rooted binary trees

• size(•) = 1

• size
$$\left(\begin{array}{c} \mathbf{T}_{1} \\ \mathbf{T}_{1} \\ \mathbf{T}_{2} \end{array} \right) = 1 + \text{size}(\mathbf{T}_{1}) + \text{size}(\mathbf{T}_{2})$$

• height(•) = 0

• height
$$(\underbrace{\cdot, \cdot, \cdot, \cdot, \cdot, \cdot}_{T_1, \cdot, \cdot, \cdot, \cdot}) = 1 + \max\{\text{height}(T_1), \text{height}(T_2)\}$$

How to prove $\forall x \in S, P(x)$ is true:

Base Case: Show that P(u) is true for all specific elements u of S mentioned in the *Basis step*

Inductive Hypothesis: Assume that *P* is true for some arbitrary values of *each* of the existing named elements mentioned in the *Recursive step*

Inductive Step: Prove that P(w) holds for each of the new elements w constructed in the *Recursive step* using the named elements mentioned in the Inductive Hypothesis

Conclude that $\forall x \in S, P(x)$

How to prove $\forall x \in S, P(x)$ is true:

Base Case: Show that P(u) is true for all specific elements u of S mentioned in the *Basis step*

Inductive Hypothe arbitrary values o mentioned in the

Inductive Step: Prelements w construction named elements

Conclude that $\forall x$

structural induction vs. ordinary induction

Ordinary induction is a special case of structural induction: Recursive definition of \mathbb{N} **Basis:** $0 \in \mathbb{N}$ **Recursive step:** If $k \in \mathbb{N}$ then $k + 1 \in \mathbb{N}$

Structural induction follows from ordinary induction:

Let Q(n) be true iff for all $x \in S$ that take *n* recursive steps to be constructed, P(x) is true.

Let *S* be given by:

- **Basis:** $6 \in S$; $15 \in S$;
- **Recursive:** if $x, y \in S$ then $x + y \in S$.

Claim: Every element of *S* is divisible by 3.