Fall 2015

Lecture 18:
Recursively defined sets and structural induction

Four weeks left: What happens now?

The class speeds up a bit.
Homework problems get more conceptual.
We will cover:

- Recursively defined sets and functions
- Structural induction
- Regular expressions and context free grammars
- Relations and graphs
- Finite state machines and automata
- Turing machines and undecidability

administrative

Will give exams back at the end of class.

Regrade requests: Each problem belongs to a TA
Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6

You have to go see the relevant grader.
As usual:
Make sure you understand the problem and your solution.
stressed?

recursive definition of sets

Recursive definition

- Basis step: $0 \in S$
- Recursive step: if $x \in S$, then $x+2 \in S$
- Exclusion rule: Every element in S follows from basis steps and a finite number of recursive steps

$$
\begin{aligned}
& S=\{\text { non-nge even integers }\} \\
& S=\{0,2,4,6, \ldots\}
\end{aligned}
$$

Basis:

$$
6 \in S ; 15 \in S ;
$$

Recursive: if $x, y \in S$, then $x+y \in S$;

Basis:

$$
S=\left\{\begin{array}{l}
6 a+\mid 5 b: a, b \geq 0, a+b \geq 1\} \\
{[1,1,0] \in S,[0,1,1] \in S}
\end{array}\right.
$$

Recursive:
if $[x, y, z] \in S, \alpha \in \mathbb{R}$, then $[\alpha x, \alpha y, \alpha z] \in S$

$$
\begin{aligned}
& \text { if }\left[x_{1}, y_{1}, z_{1}\right],\left[x_{2}, y_{2}, z_{2}\right] \in S \\
& \text { then }\left[x_{1}+x_{2}, \quad y_{1}+y_{2}, z_{1}+z_{2}\right] \in S
\end{aligned}
$$

Powersonan $([1,1,0],[0,1,1]) \subseteq \mathbb{R}^{3}$

Recursive definition

- Basis step: Some specific elements are in S
- Recursive step: Given some existing named elements in S some new objects constructed from these named elements are also in S.
- Exclusion rule: Every element in S follows from basis steps and a finite number of recursive steps

$$
a="_{i} \quad \text { strings }
$$

- An alphabet Σ is any finite set of characters.
e.g. $\quad \Sigma=\{0,1\}$ or $\Sigma=\{A, B, C, \ldots X, Y, Z\}$ or
- The set Σ^{*} of strings over the alphabet Σ is defined by
- Basis: $\varepsilon \in \Sigma^{\star}$ (ε is the empty string) (λ used sometimes)
- Recursive: if $w \in \Sigma^{\star}, a \in \Sigma$, then $w a \in \Sigma^{*}$

$$
016 \quad \varepsilon \rightarrow \underset{\varepsilon 0}{+0} \rightarrow 01 \rightarrow 010
$$

palindromes

Palindromes are strings that are the same backwards and forwards.

Basis:

ε is a palindrome and any $a \in \Sigma$ is a palindrome

Recursive step:

If p is a palindrome then apa is a palindrome for
every $a \in \Sigma . \quad \varepsilon \rightarrow a \varepsilon a \rightarrow \underbrace{a a \varepsilon a a}_{a a a a}$
$\mathrm{d} \rightarrow \mathrm{ada} \rightarrow$ radar
binary strings such that...
First digit cannot be a 1.

$$
T=S \cup\{\varepsilon\}
$$

Basis: $\varepsilon \in S$
Recursive: $b \in S \Rightarrow b 0 \in S$

$$
b \in S \sim b \neq \varepsilon \Rightarrow b \mid \in S
$$

* No occurrence of the substring 11.

Basis: $\varepsilon \in S, 1 \in S$
Reansine:

$$
\begin{aligned}
& b \in S \Rightarrow b 0 \in S \\
& b \in S \Rightarrow b 01 \in S
\end{aligned}
$$

function definitions on recursively defined sets

$$
\begin{array}{lrl}
\hline \text { Length: } & \operatorname{len}(010) & =1+\operatorname{len}(01) \\
& =2+\operatorname{len}(1) \\
\text { len }(\varepsilon)=0 ; & & =3+\operatorname{len}(\varepsilon)=3 . \\
\text { len }(w a)=1+\operatorname{len}(w) ; & \text { for } w \in \Sigma^{*}, a \in \Sigma
\end{array}
$$

Reversal:

$$
(011)^{R}=1(01)^{R}=110^{R}=110 \varepsilon^{R}
$$

$$
\begin{aligned}
& \varepsilon^{\mathrm{R}}=\varepsilon \\
&(w a)^{\mathrm{R}}=a w^{\mathrm{R}} \text { for } w \in \Sigma^{\star}, a \in \Sigma=110 \varepsilon \\
&=110
\end{aligned}
$$

Concatenation:

$$
E x:(x \cdot y)^{R}=y^{R} \cdot x^{R}
$$

$$
\left.\begin{array}{l}
x \cdot \varepsilon=x \text { for } x \in \Sigma^{*} \\
x \cdot w a=(x \cdot w) a \text { for } x, w \in \Sigma^{*}, a \in \Sigma \\
101 \cdot 011=(101 \cdot 01) 1
\end{array}=(101.0) 111=101011\right)
$$

function definitions on recursively defined sets
Number of vowels in a string:

$$
\begin{aligned}
& \Sigma=\{a, b, c, \ldots, z\} \\
& \mathcal{V}=\{a, e, i, o, u\}
\end{aligned}
$$

nom Vowels:

$$
\begin{aligned}
& \text { numb } \operatorname{Vonels}(\varepsilon)=0 \\
& \text { numVowels }(w a)= \begin{cases}1+\operatorname{num} \operatorname{Vonets}(w) & a \in V \\
\\
\\
& a \in \Sigma^{*}\end{cases}
\end{aligned}
$$

rooted binary trees

- Basis:
- is a rooted binary tree
- Recursive step:

rooted binary trees

- Basis:
- is a rooted binary tree
- Recursive step:

then so is:

defining a function on rooted binary trees

- $\operatorname{size}(\cdot)=1$
- $\operatorname{size}(\xlongequal{\sim}$
- $\operatorname{height}(\cdot)=0$

$$
\begin{aligned}
& \text { height }\left(\begin{array}{ll}
\left(A_{2}\right)
\end{array}\right. \\
&=1+\max \left(\text { height }\left(C_{1}\right)_{1}\right. \\
&\text { height } \left.\left(T_{2}\right)\right)
\end{aligned}
$$

- height $(\underset{\sim}{2}$

structural induction

How to prove $\forall x \in S, P(x)$ is true:
Base Case: Show that $P(u)$ is true for all specific elements u of S mentioned in the Basis step

Inductive Hypothesis: Assume that P is true for some arbitrary values of each of the existing named elements mentioned in the Recursive step

Inductive Step: Prove that $P(w)$ holds for each of the new elements w constructed in the Recursive step using the named elements mentioned in the Inductive Hypothesis

Conclude that $\forall x \in S, P(x)$

structural induction

How to prove $\forall x \in S, P(x)$ is true:

Base Case: Show that $P(u)$ is true for all specific elements u of S mentioned in the Basis step

Inductive Hypothe arbitrary values of mentioned in the t

Inductive Step: Pr elements w const named elements \boldsymbol{n}

Conclude that $\forall x$

- Basis:
- Recursive step:

then so is:


```
structural induction vs. ordinary induction
```

Ordinary induction is a special case of structural induction:
Recursive definition of \mathbb{N}
Basis: $0 \in \mathbb{N}$
Recursive step: If $k \in \mathbb{N}$ then $k+1 \in \mathbb{N}$

Structural induction follows from ordinary induction:
Let $Q(n)$ be true iff for all $x \in S$ that take n recursive steps to be constructed, $P(x)$ is true.

using structural induction

Let S be given by:

- Basis: $6 \in S ; 15 \in S$;
- Recursive: if $x, y \in S$ then $x+y \in S$.

Claim: Every element of S is divisible by 3 .

