
cse 311: foundations of computing

Fall 2015
Lecture 17: Strong induction & Recursive definitions

administrative

Midterm review session Sunday @ 1:00 pm (EEB 105)

MIDTERM MONDAY (IN THIS ROOM, USUAL TIME)

Closed book.
One page (front and back) of notes allowed.

Exam includes induction!
Homework #5 is due on Friday, Nov 13th.

No office hours on Monday/Wednesday

review: strong induction

Follows from ordinary induction applied to

 𝑄 𝑛 = 𝑃 0 𝑃 1 𝑃 2 ⋯ 𝑃(𝑛)

 𝑃 0

∀𝑘 𝑃 0 ∧ 𝑃 1 ∧ 𝑃 2 ∧ ⋯ ∧ 𝑃 𝑘 → 𝑃 𝑘 + 1

 ∴ ∀𝑛 𝑃(𝑛)

review: strong induction English proof

1. By induction we will show that 𝑃(𝑛) is true for every

𝑛 ≥ 0

2. Base Case: Prove 𝑃(0)

3. Inductive Hypothesis:

Assume that for some arbitrary integer 𝑘 ≥ 0, 𝑃(𝑗) is

true for every 𝑗 from 0 to 𝑘

4. Inductive Step:

Prove that 𝑃(𝑘 + 1) is true using the Inductive

Hypothesis (that 𝑃(𝑗) is true for all values 𝑘)

5. Conclusion: Result follows by induction

review: Fibonacci numbers

𝑓0 = 0

𝑓1 = 1

𝑓𝑛 = 𝑓𝑛−1 + 𝑓𝑛−2 for all 𝑛 ≥ 2

review: bounding the Fibonacci numbers

Theorem: 𝑓𝑛 < 2𝑛 for all 𝑛 ≥ 2.

bounding the Fibonacci numbers

Theorem: 2
𝑛

2
−1 ≤ 𝑓𝑛 < 2𝑛 for all 𝑛 ≥ 2

f0 = 0; f1 = 1; fn = fn-1 + fn-2 for all 𝑛 ≥ 2

Theorem: 2n/2-1 fn < 2n for all 𝑛 ≥ 2

Proof:

1. Let P(n) be “2n/2-1 fn < 2n. By (strong) induction we prove P(n) for all n ≥ 2.

2. Base Case: P(2) is true: f2=1, 22/2-1=20=1 f2, 22=4>f2

3. Ind.Hyp: Assume 2j/2-1 fj < 2j for all integers j with 2 j k for for some
 arbitrary integer k ≥ 2.

4. Ind. Step: Goal: Show 2(k+1)/2-1 fk+1 < 2k+1
 Case k=2: P(3) is true: f3=f2+f1=1+1=2, 23/2-1=21/2 2 = f3, 23=8 > f3

 Case k≥3:

 fk+1 = fk + fk-1 2k/2-1 + 2(k-1)/2 – 1 by I.H. since k-1 ≥ 2
 > 2(k-1)/2-1 + 2(k-1)/2 – 1 = 2∙2(k-1)/2-1 = 2(k+1)/2 – 1

 fk+1 = fk + fk-1 < 2k + 2(k-1) by I.H. since k-1 ≥ 2
 < 2k + 2k = 2∙2k = 2k+1

The divisibility theorem

Theorem: For any positive integers 𝑛, 𝑑, there are integers
𝑞, 𝑟 such that 𝑛 = 𝑑𝑞 + 𝑟 and 0 ≤ 𝑟 ≤ 𝑑 − 1.

running time of Euclid’s algorithm

running time of Euclid’s algorithm

Theorem: Suppose that Euclid’s algorithm takes 𝑛 steps
 for gcd(𝑎, 𝑏) with 𝑎 > 𝑏, then 𝑎 ≥ 𝑓𝑛+1.

Proof:

Set 𝑟𝑛+1 = 𝑎, 𝑟𝑛 = 𝑏 then Euclid’s algorithm computes

 𝑟𝑛+1 = 𝑞𝑛𝑟𝑛 + 𝑟𝑛−1
 𝑟𝑛 = 𝑞𝑛−1𝑟𝑛−1 + 𝑟𝑛−2

 ⋮

 𝑟3 = 𝑞2𝑟2 + 𝑟1
 𝑟2 = 𝑞1𝑟1

each quotient 𝑞𝑖 ≥ 1
 𝑟1 ≥ 1

recursive definition of sets

Recursive definition

– Basis step: 0 𝑆

– Recursive step: if 𝑥 𝑆, then 𝑥 + 2 𝑆

– Exclusion rule: Every element in 𝑆 follows from basis

steps and a finite number of recursive steps

Basis: 6 ∈ 𝑆; 15 ∈ 𝑆;
Recursive: if 𝑥, 𝑦 𝑆, then 𝑥 + 𝑦 𝑆;

Basis: 1, 1, 0 𝑆, 0, 1, 1 𝑆;
Recursive:
 if 𝑥, 𝑦, 𝑧 𝑆, 𝛼 ∈ ℝ, then 𝑥, 𝛼𝑦, 𝛼𝑧 ∈ 𝑆
 if [𝑥1, 𝑦1, 𝑧1], [𝑥2, 𝑦2, 𝑧2] 𝑆
 then [𝑥1 + 𝑥2, 𝑦1 + 𝑦2, 𝑧1 + 𝑧2] 𝑆

Powers of 3:

recursive definition of sets

recursive definitions of sets: general form

Recursive definition
– Basis step: Some specific elements are in 𝑆
– Recursive step: Given some existing named elements in

𝑆 some new objects constructed from these named
elements are also in 𝑆.

– Exclusion rule: Every element in 𝑆 follows from basis
steps and a finite number of recursive steps

strings

• An alphabet is any finite set of characters.

• The set * of strings over the alphabet is defined by
– Basis: ℇ * (ℇ is the empty string)
– Recursive: if 𝑤 *, 𝑎 , then 𝑤𝑎 *

palindromes

Palindromes are strings that are the same backwards
and forwards.

Basis:
 ℇ is a palindrome and any 𝑎 ∈ is a palindrome

 Recursive step:
 If 𝑝 is a palindrome then 𝑎𝑝𝑎 is a palindrome for
 every 𝑎 ∈ .

all binary strings with no 1’s before 0’s

function definitions on recursively defined sets

Length:
 len (ℇ) = 0;
 len (𝑤𝑎) = 1 + len(𝑤); for 𝑤 ∈ Σ∗, 𝑎 ∈ Σ

Reversal:
 ℇR = ℇ
 𝑤𝑎 R = 𝑎𝑤R for 𝑤 *, 𝑎

Concatenation:

function definitions on recursively defined sets

Length:
 len (ℇ) = 0;
 len (𝑤𝑎) = 1 + len(𝑤); for 𝑤 ∈ Σ∗, 𝑎 ∈ Σ

Reversal:
 ℇR = ℇ
 𝑤𝑎 R = 𝑎𝑤R for 𝑤 *, 𝑎

Concatenation:
 𝑥 • ℇ = 𝑥 for 𝑥 *
 𝑥 • 𝑤𝑎 = (𝑥 • 𝑤)𝑎 for 𝑥, 𝑤 *, 𝑎

