
cse 311: foundations of computing 

Fall 2015 
Lecture 17:  Strong induction & Recursive definitions 



administrative 

Midterm review session Sunday @ 1:00 pm (EEB 105) 

MIDTERM MONDAY (IN THIS ROOM, USUAL TIME) 
 

Closed book. 
One page (front and back) of notes allowed. 

Exam includes induction! 
Homework #5 is due on Friday, Nov 13th. 

No office hours on Monday/Wednesday 



review: strong induction 

Follows from ordinary induction applied to  

 𝑄 𝑛 =  𝑃 0   𝑃 1   𝑃 2   ⋯  𝑃(𝑛) 

 𝑃 0  

∀𝑘 𝑃 0 ∧ 𝑃 1 ∧ 𝑃 2 ∧ ⋯ ∧ 𝑃 𝑘 → 𝑃 𝑘 + 1  

 ∴ ∀𝑛 𝑃(𝑛) 



review: strong induction English proof 

1. By induction we will show that 𝑃(𝑛) is true for every 

𝑛 ≥ 0 

2. Base Case:  Prove 𝑃(0) 

3. Inductive Hypothesis:  

Assume that for some arbitrary integer 𝑘 ≥  0,  𝑃(𝑗) is 

true for every 𝑗 from 0 to 𝑘 

4. Inductive Step:  

Prove that 𝑃(𝑘 + 1) is true using the Inductive 

Hypothesis (that 𝑃(𝑗) is true for all values  𝑘) 

5. Conclusion: Result follows by induction 

 



review: Fibonacci numbers 

𝑓0 = 0  

𝑓1 = 1  

𝑓𝑛 = 𝑓𝑛−1 + 𝑓𝑛−2  for all 𝑛 ≥ 2 



review: bounding the Fibonacci numbers 

Theorem:   𝑓𝑛 < 2𝑛 for all 𝑛 ≥ 2. 



bounding the Fibonacci numbers 

Theorem:  2
𝑛

2
−1 ≤ 𝑓𝑛 < 2𝑛 for all 𝑛 ≥ 2 



f0 = 0; f1 = 1; fn = fn-1 + fn-2 for all 𝑛 ≥ 2 

Theorem:   2n/2-1  fn < 2n for all 𝑛 ≥ 2 

Proof:  

1.  Let P(n) be “2n/2-1  fn < 2n.   By (strong) induction we prove P(n) for all n ≥ 2. 

2. Base Case: P(2) is true: f2=1,    22/2-1=20=1  f2,  22=4>f2 

3. Ind.Hyp:  Assume 2j/2-1  fj < 2j   for all integers j with 2  j  k for for some 
   arbitrary integer k ≥ 2. 

4. Ind. Step:      Goal:  Show 2(k+1)/2-1  fk+1 < 2k+1 
          Case k=2: P(3) is true: f3=f2+f1=1+1=2,    23/2-1=21/2  2 = f3,  23=8 > f3 

          Case k≥3:  

  fk+1 = fk + fk-1  2k/2-1 + 2(k-1)/2 – 1       by I.H. since k-1 ≥ 2 
             > 2(k-1)/2-1 + 2(k-1)/2 – 1  = 2∙2(k-1)/2-1 = 2(k+1)/2 – 1 

                          fk+1 = fk + fk-1 < 2k + 2(k-1)    by I.H. since k-1 ≥ 2 
                                 < 2k + 2k  = 2∙2k = 2k+1 

 



The divisibility theorem 

Theorem: For any positive integers 𝑛, 𝑑, there are integers 
𝑞, 𝑟 such that 𝑛 = 𝑑𝑞 + 𝑟 and 0 ≤ 𝑟 ≤ 𝑑 − 1. 



running time of Euclid’s algorithm 



running time of Euclid’s algorithm 

Theorem: Suppose that Euclid’s algorithm takes 𝑛 steps 
     for gcd(𝑎, 𝑏) with 𝑎 > 𝑏, then 𝑎 ≥ 𝑓𝑛+1. 
 
Proof: 
 
Set 𝑟𝑛+1 = 𝑎, 𝑟𝑛 = 𝑏 then Euclid’s algorithm computes 
 
     𝑟𝑛+1 = 𝑞𝑛𝑟𝑛 + 𝑟𝑛−1 
     𝑟𝑛      = 𝑞𝑛−1𝑟𝑛−1 + 𝑟𝑛−2 

                        ⋮ 
 
 𝑟3     = 𝑞2𝑟2 + 𝑟1 
      𝑟2     = 𝑞1𝑟1 

 
 

each quotient   𝑞𝑖 ≥ 1 
      𝑟1 ≥ 1 



recursive definition of sets 

Recursive definition 

– Basis step:  0  𝑆 

– Recursive step:  if 𝑥  𝑆, then 𝑥 + 2  𝑆 

– Exclusion rule:  Every element in 𝑆 follows from basis 

steps and a finite number of recursive steps 



Basis:   6 ∈ 𝑆;   15 ∈ 𝑆; 
Recursive:   if 𝑥, 𝑦  𝑆, then 𝑥 +  𝑦  𝑆; 
 
 
Basis:    1, 1, 0  𝑆, 0, 1, 1 𝑆; 
Recursive:  
  if 𝑥, 𝑦, 𝑧  𝑆, 𝛼 ∈  ℝ,  then 𝑥, 𝛼𝑦, 𝛼𝑧 ∈ 𝑆 
         if [𝑥1, 𝑦1, 𝑧1], [𝑥2, 𝑦2, 𝑧2]  𝑆   
                  then [𝑥1 +  𝑥2,  𝑦1 +  𝑦2,  𝑧1 +  𝑧2]  𝑆 
 
Powers of 3: 

recursive definition of sets 



recursive definitions of sets: general form 

Recursive definition 
– Basis step:  Some specific elements are in 𝑆  
– Recursive step:  Given some existing named elements in 

𝑆 some new objects constructed from these named 
elements are also in 𝑆. 

– Exclusion rule:  Every element in 𝑆 follows from basis 
steps and a finite number of recursive steps 



strings 

• An alphabet  is any finite set of characters. 
 
 

• The set * of strings over the alphabet  is defined by 
– Basis: ℇ  *  (ℇ is the empty string) 
– Recursive:  if 𝑤  *, 𝑎  , then 𝑤𝑎  * 



palindromes 

Palindromes are strings that are the same backwards 
and forwards. 

 
Basis:  
 ℇ is a palindrome and any 𝑎 ∈  is a palindrome 

 
 Recursive step: 
   If 𝑝 is a palindrome then 𝑎𝑝𝑎 is a palindrome for 
    every 𝑎 ∈ . 

 



all binary strings with no 1’s before 0’s 



function definitions on recursively defined sets 

Length: 
 len (ℇ) = 0; 
 len (𝑤𝑎) = 1 + len(𝑤);  for 𝑤 ∈ Σ∗, 𝑎 ∈ Σ 
 
Reversal: 
 ℇR = ℇ 
 𝑤𝑎 R = 𝑎𝑤R  for 𝑤  *, 𝑎   
 
Concatenation: 
 
 



function definitions on recursively defined sets 

Length: 
 len (ℇ) = 0; 
 len (𝑤𝑎) = 1 + len(𝑤);  for 𝑤 ∈ Σ∗, 𝑎 ∈ Σ 
 
Reversal: 
 ℇR = ℇ 
 𝑤𝑎 R = 𝑎𝑤R  for 𝑤  *, 𝑎   
 
Concatenation: 
 𝑥 • ℇ =  𝑥 for 𝑥  * 
 𝑥 •  𝑤𝑎 = (𝑥 •  𝑤)𝑎 for 𝑥, 𝑤  *, 𝑎   
 
 
 


