cse 311: foundations of computing

Fall 2015
Lecture 17: Strong induction & Recursive definitions

YOUR PARTY ENTERS THE TAVERN.

I GATHER EVERYONE AROUND
A TABLE. I HAVE THE ELVES
START WHITTLING DICE AND
GET QUT SOME PARCHMENT
FOR CHARACTER SHEETS.

\ HEY, NO RECURSING.

/

Eala




administrative

Midterm review session Sunday @ 1:00 pm (EEB 105)
MIDTERM MONDAY (IN THIS ROOM, USUAL TIME)
No office hours on Monday/Wednesday

Closed book.
One page (front and back) of notes allowed.

Exam includes induction!
Homework #5 is due on Friday, Nov 13th,



P(0)
vk ((P(0) AP(1) AP(2) A+ AP(K)) > P(k + 1))

~ Vn P(n)

Follows from ordinary induction applied to
Q(n) = P(0O) AP(1) AP(2) A--AP(n)




. By induction we will show that P (n) is true for
everyn = 0

. Base Case: Prove P(0)

. Inductive Hypothesis:
Assume that for some arbitrary integer k = 0,
P(j) is true for every j from O to k

. Inductive Step:
Prove that P(k + 1) is true using the Inductive
Hypothesis (that P(j) is true for all values < k)

. Conclusion: Result follows by induction



fo
f1

0
1




Theorem: f, < 2" foralln > 2.



bounding the Fibonacci numbers

Theorem: 227" < f, < 2" foralln > 2



f,=0;f,=1;f =f ,+f foralln > 2

Theorem: 2V21<f <2"foralln > 2
Proof:

1. Let P(n) be “2MZ1<f < 2", By (strong) induction we prove P(n) for all n > 2.
2. Base Case: P(2)istrue: f,=1, 2%21=20=1<f, 22=4>f,

3. Ind.Hyp: Assume 2//21 <f,< 2 for all integers j with 2 <j <k for for some
arbitrary integer k > 2.

4. Ind.Step: |[Goal: Show 2(k+1)/2-1 <f, = < 2kl
Case k=2: P(3) is true: f,=f,+f,=1+1=2, 23/21=212<2 =f, 23=8>f,
Case k>3:
fo,,=f +f_,>2K21 4 20N/2=1 " phy | H. since k-12>2
> 2(k-1)/2-1 4 9(k-1)/2-1 — 9.9(k-1)/2-1 = (k+1)/2 -1
f.=f +f_<2k+2kD by H. sincek-122
< 2k 4 2k — 2.2k = Jk+1




The divisibility theorem

Theorem: For any positive integers n, d, there are integers
g,vsuchthatn =dg+rand0<r<d-1.



running time of Euclid’s algorithm




running time of Euclid’s algorithm

Theorem:  Suppose that Euclid’s algorithm takes n steps
for gcd(a, b) witha > b, thena > f,44.

Proof:

Setr,.1 = a,r,, = b then Euclid's algorithm computes

Th+1l = Qntpn + Th-1

O each quotient ¢; > 1

r =1
T3 =1 +1
r, =411



recursive definition of sets

Recursive definition
— Basis step: 0 € S
— Recursive step: if x € S,thenx+2 € S

— Exclusion rule: Every element in S follows from basis
steps and a finite number of recursive steps



recursive definition of sets

Basis: 6€S; 15€ S;
Recursive: If x,y € S,thenx + y € S;

Basis: [1,1,0]€ S,[0,1,1]eS:
Recursive:
If [x,y,z]e S, @ € R, then [ox,ay,az] €S

if [x1, ¥, 2], [0, V5, 2,] €S
then[x, + x,, ¥y, + ¥y, z; + 2,] €S

Powers of 3:



recursive definitions of sets: general form

Recursive definition
— Basis step: Some specific elements arein S

— Recursive step: Given some existing named elements in
S some new objects constructed from these named
elements are also in S.

— Exclusion rule: Every element in S follows from basis
steps and a finite number of recursive steps



strings

 An alphabet X is any finite set of characters.

« The set X* of strings over the alphabet X is defined by
— Basis: € € X* (€ is the empty string)
— Recursive: if w € X%, a € X, then wa € Z*



palindromes

Palindromes are strings that are the same backwards
and forwards.

Basis:
€ 1s a palindrome and any a € X i1s a palindrome

Recursive step:
If p Is a palindrome then apa is a palindrome for
every a € 2.



all binary strings with no 1's before 0’s




function definitions on recursively defined sets

Length:
len (€) = 0;
len (wa) =1 +len(w); forw € 2*,a € X

Reversal:
sR =¢

(wa)R = aw® forw e X* aeX

Concatenation:



function definitions on recursively defined sets

Length:
len (€) = 0;
len (wa) =1 +len(w); forw € 2*,a € X

Reversal:
sR =¢
(wa)R = aw® forw e X* aeX

Concatenation:
x o= xforx e 2*
x ewa=(x e w)aforx,weX*aeX



