cse 311: foundations of computing

Fall 2015

Lecture 17: Strong induction \& Recursive definitions

YOUR PARTY ENTERS THE TAVERN.
I GATHER EVERYONE AROUND
A TABLE. I HAVE THE ELVES START WHITTLING DICE AND GET OUT SOME PARCHMENT FOR CHARACTER SHEETS.

Midterm review session Sunday @ 1:00 pm (EEB 105)
MIDTERM MONDAY (IN THIS ROOM, USUAL TIME)
No office hours on Monday/Wednesday
Closed book.
One page (front and back) of notes allowed.
Exam includes induction!
Homework \#5 is due on Friday, Nov $13^{\text {th }}$.

$P(0)$

$$
\forall k((P(0) \wedge P(1) \wedge P(2) \wedge \cdots \wedge P(k)) \rightarrow P(k+1))
$$

$\therefore \forall n P(n)$

Follows from ordinary induction applied to

$$
Q(n)=P(0) \wedge P(1) \wedge P(2) \wedge \cdots \wedge P(n)
$$

1. By induction we will show that $P(n)$ is true for every $n \geq 0$
2. Base Case: Prove $P(0)$
3. Inductive Hypothesis:

Assume that for some arbitrary integer $k \geq 0$, $P(j)$ is true for every j from 0 to k
4. Inductive Step:

Prove that $P(k+1)$ is true using the Inductive Hypothesis (that $P(j)$ is true for all values $\leq k$)
5. Conclusion: Result follows by induction

review: Fibonacci numbers

$$
\begin{aligned}
& f_{0}=0 \\
& f_{1}=1 \\
& f_{n}=f_{n-1}+f_{n-2} \text { for all } n \geq 2
\end{aligned}
$$


```
review: bounding the Fibonacci numbers
```

Theorem: $f_{n}<2^{n}$ for all $n \geq 2$.

bounding the Fibonacci numbers

Theorem: $2^{\frac{n}{2}-1} \leq f_{n}<2^{n}$ for all $n \geq 2$

$$
f_{0}=0 ; f_{1}=1 ; f_{n}=f_{n-1}+f_{n-2} \text { for all } n \geq 2
$$

Theorem: $2^{n / 2-1} \leq f_{n}<2^{n}$ for all $n \geq 2$
Proof:

1. Let $P(n)$ be " $2^{n / 2-1} \leq f_{n}<2^{n}$. By (strong) induction we prove $P(n)$ for all $n \geq 2$.
2. Base Case: $P(2)$ is true: $f_{2}=1, \quad 2^{2 / 2-1}=2^{0}=1 \leq f_{2}, 2^{2}=4>f_{2}$
3. Ind.Hyp: Assume $2^{j / 2-1} \leq f_{j}<2^{j}$ for all integers j with $2 \leq j \leq k$ for for some arbitrary integer $\mathrm{k} \geq 2$.
4. Ind. Step: Goal: Show $2^{(k+1) / 2-1} \leq f_{k+1}<2^{k+1}$

Case k=2: $P(3)$ is true: $f_{3}=f_{2}+f_{1}=1+1=2, \quad 2^{3 / 2-1}=2^{1 / 2} \leq 2=f_{3}, \quad 2^{3}=8>f_{3}$
Case $\mathrm{k} \geq 3$:

$$
\begin{aligned}
& f_{k+1}=f_{k}+f_{k-1} \geq 2^{k / 2-1}+2^{(k-1) / 2-1} \quad \text { by I.H. since } k-1 \geq 2 \\
&>2^{(k-1) / 2-1}+2^{(k-1) / 2-1}=2 \cdot 2^{(k-1) / 2-1}=2^{(k+1) / 2-1} \\
& f_{k+1}= f_{k}+f_{k-1}<2^{k}+2^{(k-1)} \quad \text { by I.H. since } k-1 \geq 2 \\
&<2^{k}+2^{k}=2 \cdot 2^{k}=2^{k+1}
\end{aligned}
$$

The divisibility theorem

Theorem: For any positive integers n, d, there are integers q, r such that $n=d q+r$ and $0 \leq r \leq d-1$.

running time of Euclid's algorithm

Theorem: Suppose that Euclid's algorithm takes n steps for $\operatorname{gcd}(a, b)$ with $a>b$, then $a \geq f_{n+1}$.

Proof:

Set $r_{n+1}=a, r_{n}=b$ then Euclid's algorithm computes

$$
\begin{array}{lrl}
r_{n+1} & =q_{n} r_{n}+r_{n-1} & \\
r_{n} & =q_{n-1} r_{n-1}+r_{n-2} & \text { each quotient } \\
& \vdots & q_{i} \geq 1 \\
r_{3} & =q_{2} r_{2}+r_{1} & r_{1} \geq 1 \\
r_{2} & =q_{1} r_{1} & \\
\end{array}
$$

recursive definition of sets

Recursive definition

- Basis step: $0 \in S$
- Recursive step: if $x \in S$, then $x+2 \in S$
- Exclusion rule: Every element in S follows from basis steps and a finite number of recursive steps

recursive definition of sets

Basis: $\quad 6 \in S ; 15 \in S$;
Recursive: if $x, y \in S$, then $x+y \in S$;

Basis:

$$
[1,1,0] \in S,[0,1,1] \in S ;
$$

Recursive:

$$
\begin{aligned}
& \text { if }[x, y, z] \in S, \alpha \in \mathbb{R}, \text { then }[\alpha x, \alpha y, \alpha z] \in S \\
& \text { if }\left[x_{1}, y_{1}, z_{1}\right],\left[x_{2}, y_{2}, z_{2}\right] \in S \\
& \text { then }\left[x_{1}+x_{2}, y_{1}+y_{2}, z_{1}+z_{2}\right] \in S
\end{aligned}
$$

Powers of 3:

Recursive definition

- Basis step: Some specific elements are in S
- Recursive step: Given some existing named elements in S some new objects constructed from these named elements are also in S.
- Exclusion rule: Every element in S follows from basis steps and a finite number of recursive steps
- An alphabet Σ is any finite set of characters.
- The set Σ^{*} of strings over the alphabet Σ is defined by
- Basis: $\varepsilon \in \Sigma^{*}$ (ε is the empty string)
- Recursive: if $w \in \Sigma^{\star}, a \in \Sigma$, then $w a \in \Sigma^{\star}$

palindromes

Palindromes are strings that are the same backwards and forwards.

Basis:

ε is a palindrome and any $a \in \Sigma$ is a palindrome

Recursive step:
If p is a palindrome then $a p a$ is a palindrome for every $a \in \Sigma$.
all binary strings with no 1's before 0's

function definitions on recursively defined sets

Length:

len $(\varepsilon)=0$;
len $(w a)=1+\operatorname{len}(w) ;$ for $w \in \Sigma^{*}, a \in \Sigma$
Reversal:

$$
\varepsilon^{R}=\varepsilon
$$

$(w a)^{\mathrm{R}}=a w^{\mathrm{R}}$ for $w \in \Sigma^{\star}, a \in \Sigma$
Concatenation:

function definitions on recursively defined sets

Length:

len $(\varepsilon)=0$;
len $(w a)=1+\operatorname{len}(w) ;$ for $w \in \Sigma^{*}, a \in \Sigma$
Reversal:

$$
\begin{aligned}
& \varepsilon^{\mathrm{R}}=\varepsilon \\
& (w a)^{\mathrm{R}}=a w^{\mathrm{R}} \text { for } w \in \Sigma^{\star}, a \in \Sigma
\end{aligned}
$$

Concatenation:
$x \bullet \varepsilon=x$ for $x \in \Sigma^{*}$
$x \bullet w a=(x \bullet w) a$ for $x, w \in \Sigma^{\star}, a \in \Sigma$

