cse 311: foundations of computing

Spring 2015

Lecture 16: Strong induction

review: induction is a rule of inference

Domain: Natural Numbers

$$
\begin{aligned}
& P(0) \\
& \forall k(P(k) \rightarrow P(k+1)) \\
& \therefore \forall n P(n)
\end{aligned}
$$

$$
\begin{aligned}
& P(0) \\
& \forall k(P(k) \rightarrow P(k+1))
\end{aligned}
$$

$$
\therefore \forall n P(n)
$$

1. Prove $P(0)$
2. Let k be an arbitrary integer ≥ 0
3. Assume that $P(k)$ is true
4. ...
5. Prove $P(k+1)$ is true
6. $P(k) \rightarrow P(k+1)$
7. $\forall \mathrm{k}(\mathrm{P}(\mathrm{k}) \rightarrow \mathrm{P}(\mathrm{k}+1))$
8. $\forall \mathrm{nP}(\mathrm{n})$

Direct Proof Rule
Intro \forall from 2-6
Induction Rule 1\&7

$$
\begin{aligned}
& P(0) \\
& \forall k(P(k) \rightarrow P(k+1))
\end{aligned}
$$

$\therefore \forall n P(n)$

Proof:

1. "We will show that $P(\mathrm{n})$ is true for every $\mathrm{n} \geq 0$ by induction."
2. "Base Case:" Prove P(0)
3. "Inductive Hypothesis:"

Assume $P(k)$ is true for some arbitrary integer $k \geq 0$ "
4. "Inductive Step:" Want to prove that $P(k+1)$ is true:

Use the goal to figure out what you need.
Make sure you are using I.H. and point out where you are using
it. (Don't assume $P(k+1)$!)
5. "Conclusion: Result follows by induction."

prove $3^{n} \geq n^{2}$ for all $n \geq 3$.

Let $\mathrm{P}(\mathrm{n})$ be " $3^{\mathrm{n}} \geq \mathrm{n}^{2}$ " for all $\mathrm{n} \geq 3$.
We go by induction on n.

Base Case:

$$
3^{3}=27 \geq 9=3^{2} \text {. So, } P(3) \text { is true. }
$$

Induction Hypothesis:

Suppose $\mathrm{P}(\mathrm{k})$ is true for some arbitrary $\mathrm{k} \geq 3$.

Induction Step:

Note that $3^{k+1}=3\left(3^{k}\right) \geq 3\left(k^{2}\right)$, by the IH.
Furthermore, note that $(k+1)^{2}=k^{2}+2 k+1$.
Note that since $k \geq 3, k^{2} \geq 3 k \geq 2 k$. And similarly, $k^{2} \geq 1$.
So, continuing from above:

$$
3^{k+1}=3\left(3^{k}\right) \geq 3\left(k^{2}\right)=k^{2}+k^{2}+k^{2} \geq k^{2}+2 k+1=(k+1)^{2}
$$

Since this is exactly $P(k+1)$, we've shown $P(k) \rightarrow P(k+1)$

Thus, $P(n)$ is true for all $n \geq 3$, by induction.

prove $2 n^{3}+2 n-5 \geq n^{2}$ for all $n \geq 2$.

Note that $2(n+1)^{3}=2 n^{3}+6 n^{2}+6 n+2$.
Let $P(n)$ be " $2 n^{3}+2 n-5 \geq n^{2 "}$ for all $n \geq 2$.
We go by induction on n.

Base Case:

$$
2^{*} 2^{3}+2^{*} 2-5=45 \geq 4=2^{2} . \text { So, } P(0) \text { is true. }
$$

Induction Hypothesis:

Suppose $\mathrm{P}(\mathrm{n})$ is true for some arbitrary $\mathrm{n} \geq 2$.
Induction Step: Then, note that...

$$
\begin{aligned}
(n+1)^{2} & \leq n^{2}+2 n+1 & & \\
& \leq\left(2 n^{3}+2 n-5\right)+2 n+1 & & \text { (by IH) } \\
& \leq\left(2 n^{3}+4 n+1\right)-5 & & \text { (Re-arranging) } \\
& \leq\left(2 n^{3}+6 n^{2}+6 n+2\right)-5 & & \left(4 n+1 \leq 6 n+6 n^{2}+2\right) \\
& \leq 2(n+1)^{3}-5 & & \text { (Factoring) } \\
& \leq 2(n+1)^{3}+2 n-5 & & (0 \leq 2 n)
\end{aligned}
$$

Since this is exactly $P(k+1)$, we've shown $P(k) \rightarrow P(k+1)$
Thus, $P(n)$ is true for all $n \geq 3$, by induction.

strong induction

$$
\begin{aligned}
& P(0) \\
& \forall k((P(0) \wedge P(1) \wedge P(2) \wedge \cdots \wedge P(k)) \rightarrow P(k+1))
\end{aligned}
$$

$\therefore \forall n P(n)$

Follows from ordinary induction applied to

$$
Q(n)=P(0) \wedge P(1) \wedge P(2) \wedge \cdots \wedge P(n)
$$

strong induction English proof

1. By induction we will show that $P(n)$ is true for every $n \geq 0$
2. Base Case: Prove $P(0)$
3. Inductive Hypothesis:

Assume that for some arbitrary integer $k \geq 0$, $P(j)$ is true for every j from 0 to k
4. Inductive Step:

Prove that $P(k+1)$ is true using the Inductive Hypothesis (that $P(j)$ is true for all values $\leq k$)
5. Conclusion: Result follows by induction

every integer at least 2 is the product of primes

We argue by strong induction.
$P(n)=$ " n can be expressed as a product of primes" for $n \geq 2$.

Base Case:

Note that 2 is prime; so, we can express it as " 2 " which is a product of primes.

Induction Hypothesis:

Suppose $P(2) \wedge P(3) \wedge$ • • $\wedge P(k)$ is true for some $k \geq 2$.

Induction Step:

We go by cases.
Suppose $k+1$ is prime. Then, " $k+1$ " is a product of primes.
Suppose $k+1$ is composite. Then, $k+1=a b$ for some a and b such that $1<a, b<k+1$.
By our IH, we know $a=p_{1} p_{2} \cdots p_{m}$ and $b=q_{1} q_{2} \cdots q_{n}$.
So, $k+1=a b=$ " $p_{1} p_{2} \cdots p_{m} q_{1} q_{2} \cdots q_{n}$ ", which is a product of primes.

Thus, our claim is true for $\mathrm{n} \geq 2$ by strong induction.

recursive definition of functions

- $F(0)=0 ; F(n+1)=F(n)+1$ for all $n \geq 0$
- $G(0)=1 ; G(n+1)=2 \times G(n)$ for all $n \geq 0$
- $0!=1 ;(n+1)!=(n+1) \times n!$ for all $n \geq 0$
- $H(0)=1 ; H(n+1)=2^{H(n)}$ for all $n \geq 0$

$$
\begin{aligned}
& f_{0}=0 \\
& f_{1}=1 \\
& f_{n}=f_{n-1}+f_{n-2} \text { for all } n \geq 2
\end{aligned}
$$

bounding the Fibonacci numbers

Theorem: $f_{n}<2^{n}$ for all $n \geq 2$.

bounding the Fibonacci numbers

Theorem: $2^{\frac{n}{2}-1} \leq f_{n}$ for all $n \geq 2$

