cse 311: foundations of computing

Spring 2015
Lecture 16: Strong induction




Domain: Natural Numbers
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1. Prove P(0)
2. Let k be an arbitrary integer > 0
3. Assume that P(k) is true

4. ..

5. Prove P(k+1) is true
6. P(k) > P(k+1) Direct Proof Rule
7.V k (P(k) > P(k+1)) Intro V from 2-6

8. V nP(n) Induction Rule 1&7



P(0)
vk (P(k) » P(k+ 1)

. VnPmn)

Base Case

1. Prove P(0
2. Let k be an arbitrary integer 2 0
3. Assume that P(k) is true
4. ..

5. Prove P(k+1) is true

6. P(k) > P(k+1) Direct Proof Rule
7.V k (P(k) = P(k+1)) Intro V from 2-6
8. V n P(n) Induction Rule 1&7

Inductive Hypothesis

Inductive Step




Proof:
1. “We will show that P(n) is true for every n > 0 by induction.”
2. “Base Case:" Prove P(0)
3. “Inductive Hypothesis:"
Assume P(k) is true for some arbitrary integer k > 0"
4. “Inductive Step:” Want to prove that P(k+1) is true:
Use the goal to figure out what you need.

Make sure you are using I.H. and point out where you are using
it. (Don't assume P(k+1)!)

5. “Conclusion: Result follows by induction.”



prove: n"
>nlforalln>1




prove 3">n?4for alln = 3.




prove 3">n?4for alln = 3.

Let P(n) be “3"> n?” for all n > 3.
We go by induction on n.
Base Case:
33=272>29=32 So, P(3) is true.
Induction Hypothesis:
Suppose P(k) is true for some arbitrary k > 3.
Induction Step:
Note that 3k*1 = 3(3k) > 3(k2), by the IH.
Furthermore, note that (k+1)? = k? + 2k + 1.
Note that since k > 3, k?> 3k > 2k. And similarly, k?> 1.
So, continuing from above:
31 = 3(3k) > 3(k?2) = k2+ k2+ k2 > kZ2+ 2k + 1 = (k+1)2
Since this is exactly P(k+1), we’ve shown P(k) = P(k+1)

Thus, P(n) is true for all n > 3, by induction.



prove 2n+2n — 5=>n?for alln = 2.

Note that 2(n+1)> = 2n° + 6n* + 6n + 2.

Let P(n) be “2n3 +2n — 5 >n?” for all n > 2.
We go by induction on n.
Base Case:

2*234+2%2-5= 452> 4 =22 So, P(0) is true.
Induction Hypothesis:

Suppose P(n) is true for some arbitrary n > 2.
Induction Step: Then, note that...

(n+1)2 < n?+2n+1

< (2n®+2n-=-5)+2n+1 (by IH)

< (2n*+4n+1)-5 (Re-arranging)

< (2n*+6n?2+6n+2)-5 (4n+1<6Nn+6n%+2)
< 2(n+1)3-5 (Factoring)

<  2(n+1)*+2n-5 (0<2n)

Since this is exactly P(k+1), we’ve shown P(k) - P(k+1)
Thus, P(n) is true for all n > 3, by induction.



strong induction

P(0)
vk ((P(0) AP(1) AP(2) A+ AP(K)) > P(k + 1))

~ Vn P(n)

Follows from ordinary induction applied to
Q(n) = P(0O) AP(1) AP(2) A--AP(n)




strong induction English proof

. By induction we will show that P (n) is true for
everyn = 0

. Base Case: Prove P(0)

. Inductive Hypothesis:
Assume that for some arbitrary integer k = 0,
P(j) is true for every j from O to k

. Inductive Step:
Prove that P(k + 1) is true using the Inductive
Hypothesis (that P(j) is true for all values < k)

. Conclusion: Result follows by induction



every integer at least 2 1s the product of primes




every integer at least 2 is the product of primes

We argue by strong induction.
P(n) = “n can be expressed as a product of primes” for n > 2.
Base Case:
Note that 2 is prime; so, we can express it as “2” which is a
product of primes.
Induction Hypothesis:
Suppose P(2) AP(3) A = = = AP(k)is true for some k > 2.
Induction Step:
We go by cases.
Suppose k+1 is prime. Then, “k+1” is a product of primes.
Suppose k+1 is composite. Then, k+1 = ab for some a and b such
that 1 < a, b < k+1.
By our IH, we know a = p,p, -* p,,and b=q,q, *** q,.
So, k+1 =ab = “p,p, - p,,0,9, *** 9,,”, Which is a product of primes.

Thus, our claim is true for n > 2 by strong induction.



recursive definition of functions

F(0) = 0; Fn + 1) = F(n) + 1foralln >0
G(0)=1; G(n + 1) = 2XxG(n) foralln >0
00l =1 (n+ 1! = (n+1) xnlforalln =0

HO) =1; Hn + 1) = 2™ foralln >0



Fibonaccl numbers

fo=0
fi=1
fn=fn-1+ [ foralln = 2



bounding the Fibonacci numbers

Theorem: f, < 2" foralln > 2.



bounding the Fibonacci numbers

21

Theorem: 22~ < f, foralln > 2



