
cse 311: foundations of computing 

Spring 2015 
Lecture 16:  Strong induction 



review: induction is a rule of inference 

 𝑃(0) 

  𝑘 (𝑃(𝑘)  →  𝑃(𝑘 + 1)) 

 

  𝑛 𝑃(𝑛) 

Domain: Natural Numbers 



review: using the induction rule in a formal proof 

1.  Prove P(0) 
2. Let k be an arbitrary integer ≥ 0 
           3.  Assume that P(k) is true 
           4.  ... 
           5.  Prove P(k+1) is true 
6. P(k)   P(k+1)                          Direct Proof Rule 
7.  k (P(k)  P(k+1))                 Intro  from 2-6 

8.  n P(n)                                     Induction Rule 1&7 

 𝑃(0) 

  𝑘 (𝑃(𝑘)  →  𝑃(𝑘 + 1)) 

 

  𝑛 𝑃(𝑛) 



review: format of an induction proof 

1. Prove P(0) 
2. Let k be an arbitrary integer ≥ 0 
           3. Assume that P(k) is true 
           4.  ... 
           5.  Prove P(k+1) is true 
6. P(k)   P(k+1)                        Direct Proof Rule 
7.  k (P(k)  P(k+1))                Intro  from 2-6 

8.  n P(n)                                    Induction Rule 1&7 

Base Case 

Inductive Hypothesis 

Inductive Step 

Conclusion 

 𝑃(0) 

  𝑘 (𝑃(𝑘)  →  𝑃(𝑘 + 1)) 

 

  𝑛 𝑃(𝑛) 



review: inductive proof in five easy steps 

Proof:  
1. “We will show that P(n) is true for every n ≥ 0 by induction.” 
2. “Base Case:” Prove P(0) 
3. “Inductive Hypothesis:” 
  Assume P(k) is true for some arbitrary integer k ≥ 0”    
4. “Inductive Step:” Want to prove that P(k+1) is true: 
      Use the goal to figure out what you need.  
 Make sure you are using I.H. and point out where you are using 
it.   (Don’t assume P(k+1) !) 
5. “Conclusion: Result follows by induction.” 



prove: 𝑛𝑛 ≥ 𝑛! for all 𝑛 ≥ 1 



prove 3n ≥ n2 for all n ≥ 3. 



prove 3n ≥ n2 for all n ≥ 3. 

Let P(n) be “3n ≥ n2” for all n ≥ 3.   

We go by induction on n. 

Base Case: 

 33 = 27 ≥ 9 = 32.  So, P(3) is true. 

Induction Hypothesis: 

 Suppose P(k) is true for some arbitrary k ≥ 3. 

Induction Step: 

 Note that 3k+1 = 3(3k) ≥ 3(k2), by the IH. 

 Furthermore, note that (k+1)2 = k2 + 2k + 1.   

 Note that since k ≥ 3, k2 ≥ 3k ≥ 2k.  And similarly, k2 ≥ 1. 

 So, continuing from above: 

  3k+1 = 3(3k) ≥ 3(k2) = k2 + k2 + k2 ≥ k2 + 2k + 1 = (k+1)2 

 Since this is exactly P(k+1), we’ve shown P(k) → P(k+1) 

 

Thus, P(n) is true for all n ≥ 3, by induction. 



prove 2n3 + 2n – 5 ≥ n2 for all n ≥ 2. 

Let P(n) be “2n3 + 2n – 5 ≥ n2” for all n ≥ 2.   

We go by induction on n. 

Base Case: 

 2*23 + 2*2 – 5 =  45 ≥ 4 = 22.  So, P(0) is true. 

Induction Hypothesis: 

 Suppose P(n) is true for some arbitrary n ≥ 2. 

Induction Step: Then, note that… 

 (n+1)2  n2 + 2n + 1 

     (2n3 + 2n – 5) + 2n + 1    (by IH) 

     (2n3 + 4n + 1) – 5    (Re-arranging) 

     (2n3 + 6n2  + 6n + 2) – 5   (4n + 1  6n + 6n2 + 2) 

      2(n+1)3 – 5      (Factoring) 

      2(n+1)3 + 2n – 5     (0  2n) 
 Since this is exactly P(k+1), we’ve shown P(k) → P(k+1) 

Thus, P(n) is true for all n ≥ 3, by induction. 

  

Note that 2(n+1)3 = 2n3 + 6n2 + 6n + 2. 



strong induction 

Follows from ordinary induction applied to  

 𝑄 𝑛 =  𝑃 0   𝑃 1   𝑃 2   ⋯  𝑃(𝑛) 

 𝑃 0  

∀𝑘 𝑃 0 ∧ 𝑃 1 ∧ 𝑃 2 ∧ ⋯ ∧ 𝑃 𝑘 → 𝑃 𝑘 + 1  

 ∴ ∀𝑛 𝑃(𝑛) 



strong induction English proof 

1. By induction we will show that 𝑃(𝑛) is true for every 

𝑛 ≥ 0 

2. Base Case:  Prove 𝑃(0) 

3. Inductive Hypothesis:  

Assume that for some arbitrary integer 𝑘 ≥  0,  𝑃(𝑗) is 

true for every 𝑗 from 0 to 𝑘 

4. Inductive Step:  

Prove that 𝑃(𝑘 + 1) is true using the Inductive 

Hypothesis (that 𝑃(𝑗) is true for all values  𝑘) 

5. Conclusion: Result follows by induction 

 



every integer at least 2 is the product of primes 



every integer at least 2 is the product of primes 

We argue by strong induction. 
P(n) = “n can be expressed as a product of primes” for n ≥ 2. 
Base Case: 

 Note that 2 is prime; so, we can express it as “2” which is a  
 product of primes. 
Induction Hypothesis: 

 Suppose P(2) ∧ P(3) ∧ ・・・ ∧ P(k) is true for some k ≥ 2. 
Induction Step: 

 We go by cases.   
 Suppose k+1 is prime.  Then, “k+1” is a product of primes. 
 Suppose k+1 is composite.  Then, k+1 = ab for some a and b such 
 that 1 < a, b < k+1.   
 By our IH, we know a = p1p2 ⋯ pm and b = q1q2 ⋯ qn. 
 So, k+1 = ab = “p1p2 ⋯ pmq1q2 ⋯ qn”, which is a product of primes.  
 
Thus, our claim is true for n ≥ 2 by strong induction. 



recursive definition of functions 

• 𝐹(0)  =  0;  𝐹(𝑛 +  1)  =  𝐹(𝑛)  +  1 for all 𝑛 ≥ 0 
 

• 𝐺 0 =  1;  𝐺 𝑛 +  1 =   2 × 𝐺(𝑛)  for all 𝑛 ≥ 0 
 

• 0!  =  1;  𝑛 + 1 !  =  𝑛 + 1 × 𝑛! for all 𝑛 ≥ 0 
 

• 𝐻(0)  =  1;   𝐻(𝑛 +  1)  =  2𝐻 𝑛   for all 𝑛 ≥ 0 



Fibonacci numbers 

𝑓0 = 0  

𝑓1 = 1  

𝑓𝑛 = 𝑓𝑛−1 + 𝑓𝑛−2  for all 𝑛 ≥ 2 



bounding the Fibonacci numbers 

Theorem:   𝑓𝑛 < 2𝑛 for all 𝑛 ≥ 2. 



bounding the Fibonacci numbers 

Theorem:  2
𝑛

2
−1 ≤ 𝑓𝑛 for all 𝑛 ≥ 2 


