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Lecture 15:  Induction



prove: for all 𝑛 > 0, 𝑎 is odd → 𝑎𝑛 is odd

Let 𝑛 > 0 be arbitrary. 
Suppose that 𝑎 is odd.  We know that if 𝑎, 𝑏 are odd,
then 𝑎𝑏 is also odd.

So:    ⋯⋅ 𝑎 ⋅ 𝑎 ⋅ 𝑎 ⋅ ⋯ ⋅ 𝑎 = 𝑎𝑛 [𝑛 times]

Those “⋯”s are a problem!  We’re trying to say “we can 
use the same argument over and over…”
We’ll come back to this.



mathematical induction

Method for proving statements about all integers ≥ 0
– A new logical inference rule!

• It only applies over the natural numbers
• The idea is to use the special structure of the naturals 

to prove things more easily
– Particularly useful for reasoning about programs!

for(int i=0; i < n; n++) { … }

• Show P(i) holds after i times through the loop
public int f(int x) { 

if (x == 0) { return 0; }

else { return f(x–1)+1; }}

• f(x) = x for all values of x ≥ 0 naturally shown by induction.



induction is a rule of inference

𝑃(0)
 𝑘 (𝑃(𝑘) → 𝑃(𝑘 + 1))

 𝑛 𝑃(𝑛)

Domain: Natural Numbers



using the induction rule in a formal proof

1. Prove P(0)
2. Let k be an arbitrary integer ≥ 0

3.  Assume that P(k) is true
4.  ...
5.  Prove P(k+1) is true

6. P(k)  P(k+1)                         Direct Proof Rule
7.  k (P(k)  P(k+1))                Intro  from 2-6

8.  n P(n)                                   Induction Rule 1&7

𝑃(0)
 𝑘 (𝑃(𝑘) → 𝑃(𝑘 + 1))

 𝑛 𝑃(𝑛)



format of an induction proof

1. Prove P(0)
2. Let k be an arbitrary integer ≥ 0

3. Assume that P(k) is true
4.  ...
5.  Prove P(k+1) is true

6. P(k)  P(k+1)                      Direct Proof Rule
7.  k (P(k)  P(k+1))              Intro  from 2-6

8.  n P(n)                                  Induction Rule 1&7

Base Case

Inductive Hypothesis

Inductive Step

Conclusion

𝑃(0)
 𝑘 (𝑃(𝑘) → 𝑃(𝑘 + 1))

 𝑛 𝑃(𝑛)



1 + 2 + 4 + 8 + ⋯+ 2n

• 1 = 1
• 1 + 2 = 3
• 1 + 2 + 4 = 7
• 1 + 2 + 4 + 8 = 15
• 1 + 2 + 4 + 8 + 16  = 31

Can we describe the pattern?
1 + 2 + 4 + ⋯ + 2n = 2n+1 – 1



proving 1 + 2 + 4 + ⋯ + 2n = 2n+1 – 1

• We could try proving it normally…
– We want to show that 1 + 2 + 4 + ⋯ + 2n = 2n+1.
– So, what do we do now?  We can sort of explain the pattern,

but that’s not a proof…
• We could prove it for n=1, n=2, n=3, …

(individually), but that would literally take forever…



inductive proof in five easy steps

Proof: 
1. “We will show that P(n) is true for every n ≥ 0 by induction.”
2. “Base Case:” Prove P(0)
3. “Inductive Hypothesis:”

Assume P(k) is true for some arbitrary integer k ≥ 0”   
4. “Inductive Step:” Want to prove that P(k+1) is true:

Use the goal to figure out what you need. 
Make sure you are using I.H. and point out where you are using 
it.  (Don’t assume P(k+1) !)
5. “Conclusion: Result follows by induction.”



proving 1 + 2 + … + 2n = 2n+1 – 1



proving 1 + 2 + … + 2n = 2n+1 – 1

1. Let P(n) be “1 + 2 + … + 2n = 2n+1 – 1”.  We will show P(n) is true for 
all natural numbers by induction.

2. Base Case (n=0):    20 = 1 = 2 – 1 = 20+1 – 1
3. Induction Hypothesis:  Suppose that P(k) is true for some   

arbitrary k ≥ 0.
4. Induction Step:  

Goal:  Show P(k+1), i.e. show 1 + 2 + … + 2k + 2k+1 = 2k+2 – 1
1 + 2 + … + 2k = 2k+1 – 1   by IH

Adding 2k+1 to both sides, we get:
1 + 2 + … + 2k + 2k+1 = 2k+1 + 2k+1 – 1

Note that 2k+1 + 2k+1 = 2(2k+1) = 2k+2.
So, we have  1 + 2 + … + 2k + 2k+1 = 2k+2 – 1, which is 
exactly P(k+1).

5. Thus P(k) is true for all k ∈ℕ, by induction.



another example of a pattern

• 20 − 1 = 1 − 1 = 0 = 3 ⋅ 0

• 22 − 1 = 4 − 1 = 3 = 3 ⋅ 1

• 24 − 1 = 16 − 1 = 15 = 3 ⋅ 5

• 26 − 1 = 64 − 1 = 63 = 3 ⋅ 21

• 28 − 1 = 256 − 1 = 255 = 3 ⋅ 85

• ⋯



prove:  3 ∣ 22𝑛 − 1 for all 𝑛 ≥ 0



For all 𝑛 ≥ 1: 1 + 2 +⋯+ 𝑛 =  𝑖=1
𝑛 𝑖 =

𝑛 𝑛+1

2



checkerboard tiling

Prove that a 2n  2n checkerboard with one square 
removed can be tiled with: 



Prove that a 2n  2n checkerboard with one square 
removed can be tiled with: 

checkerboard tiling



Prove that a 2n  2n checkerboard with one square 
removed can be tiled with: 

checkerboard tiling



prove: 𝑛𝑛 ≥ 𝑛! for all 𝑛 ≥ 1


