cse 311: foundations of computing

Fall 2015 Lecture 15: Induction

Let n > 0 be arbitrary.

Suppose that *a* is odd. We know that if *a*, *b* are odd, then *ab* is also odd.

So:
$$(\cdots ((a \cdot a) \cdot a) \cdot \cdots \cdot a) = a^n$$
 [*n* times]

Those "…"s are a problem! We're trying to say "we can use the same argument over and over..." We'll come back to this. Method for proving statements about all integers ≥ 0

- A new logical inference rule!
 - It only applies over the natural numbers
 - The idea is to **use** the special structure of the naturals to prove things more easily

- Particularly useful for reasoning about programs!

for(int i=0; i < n; n++) { ... }</pre>

Show P(i) holds after i times through the loop
 public int f(int x) {

if (x == 0) { return 0; }

else { return f(x-1)+1; }}

• f(x) = x for all values of $x \ge 0$ naturally shown by induction.

induction is a rule of inference

Domain: Natural Numbers

$$\begin{array}{l} P(0) \\ \forall \; k \; (P(k) \; \rightarrow \; P(k+1)) \end{array}$$

 $\therefore \forall n P(n)$

using the induction rule in a formal proof

$$\begin{array}{l} P(0) \\ \forall \; k \; (P(k) \; \rightarrow \; P(k+1)) \end{array}$$

$$\therefore \forall n P(n)$$

- 1. Prove P(0)
- 2. Let k be an arbitrary integer ≥ 0
 - 3. Assume that P(k) is true
 - 4. ...
 - 5. Prove P(k+1) is true
- 6. $P(k) \rightarrow P(k+1)$
- 7. \forall k (P(k) \rightarrow P(k+1)) 8. \forall n P(n)

Direct Proof Rule Intro ∀ from 2-6 Induction Rule 1&7

format of an induction proof

$$\begin{array}{l} P(0) \\ \forall \; k \; (P(k) \; \rightarrow \; P(k+1)) \end{array}$$

$$\therefore \forall n P(n)$$

Conclusion

 $1 + 2 + 4 + 8 + \dots + 2^n$

- 1 = 1
- 1+2 = 3
- 1+2+4 = 7
- 1+2+4+8 = 15
- 1+2+4+8+16 = 31 $|+--+2^n = 2^{n+1}-1$

Can we describe the pattern? $1 + 2 + 4 + \dots + 2^n = 2^{n+1} - 1$

- We could try proving it normally...
 - We want to show that $1 + 2 + 4 + \dots + 2^{n} = 2^{n+1}$.
 - So, what do we do now? We can sort of explain the pattern, but that's not a proof...
- We could prove it for n=1, n=2, n=3, ... (individually), but that would literally take forever...

Proof:

- 1. "We will show that P(n) is true for every $n \ge 0$ by induction."
- 2. "Base Case:" Prove P(0)
- 3. "Inductive Hypothesis:"

Assume P(k) is true for some arbitrary integer $k \ge 0^{"}$

4. "Inductive Step:" Want to prove that P(k+1) is true:

Use the goal to figure out what you need.

Make sure you are using I.H. and point out where you are using it. (Don't assume P(k+1)!)

5. "Conclusion: Result follows by induction."

proving $1 + 2 + ... + 2^n = 2^{n+1} - 1$

 $P(n) = (1+2+\cdots+2) = 2^{n+1} - 1'$ God: Hinterers n20, P(n) Base case: P(0) = "1= 2'-1" tru ble 2-1=1. TH: Assume [+2+--+2k = 2k+1-1 (k) for some integer k 20. $|+2+\cdots+2^{k}+2^{k+1}=2^{k+1}-1+2^{k+1}|$ Is: From P(10), Le levow $= 2^{k+2} - 1$. Hence Pactil holds. Conclusion: therefore by induction In P(n).

- 1. Let P(n) be "1 + 2 + ... + $2^n = 2^{n+1} 1$ ". We will show P(n) is true for all natural numbers by induction.
- 2. Base Case (n=0): $2^0 = 1 = 2 1 = 2^{0+1} 1$
- 3. Induction Hypothesis: Suppose that P(k) is true for some arbitrary $k \ge 0$.
- 4. Induction Step:

Goal: Show P(k+1), i.e. show $1 + 2 + ... + 2^{k} + 2^{k+1} = 2^{k+2} - 1$

 $1 + 2 + ... + 2^k = 2^{k+1} - 1$ by IH

Adding 2^{k+1} to both sides, we get:

 $1 + 2 + \dots + 2^{k} + 2^{k+1} = 2^{k+1} + 2^{k+1} - 1$

Note that $2^{k+1} + 2^{k+1} = 2(2^{k+1}) = 2^{k+2}$.

So, we have $1 + 2 + ... + 2^{k} + 2^{k+1} = 2^{k+2} - 1$, which is exactly P(k+1).

5. Thus P(k) is true for all $k \in \mathbb{N}$, by induction.

another example of a pattern

- $2^0 1 = 1 1 = 0 = 3 \cdot 0$
- $2^2 1 = 4 1 = 3 = 3 \cdot 1$
- $2^4 1 = 16 1 = 15 = 3 \cdot 5$
- $2^6 1 = 64 1 = 63 = 3 \cdot 21$
- $2^8 1 = 256 1 = 255 = 3 \cdot 85$

+n? 0

2 -1 is a multiple of 3

 $\frac{1}{(\chi-U(\chi^{n_1}+\chi^{n_2}+\iota))}$

• • • •

prove: $3 | 2^{2n} - 1$ for all $n \ge 0$

 $P(n) = \frac{4}{3} | 2^{2n} - 1^{11}$ Pf by induction that the 20 Pm) Base care: P(0): 3/2°-1 is the b/c 0=3.0. It: Assume that 3/22k-1 for some int. K20 From (Iti), $2^{2k}-1 = 3i$ for sure int i Is: Thus $2^2(2^{2k}-1)=2^2\cdot 3i$ =) $2^{2}(2^{2k}-1) = 12_{11}$ P(k+l) $\frac{2(k+1)}{2} - 4 = 12j$ 1 \Rightarrow $2^{2(k+1)} - 1 = 12j + 3 = 3(4j + 1)$ \Rightarrow (Conclusion: By onel the PCW)

For all
$$n \ge 1$$
: $1 + 2 + \dots + n = \sum_{i=1}^{n} i = \frac{n(n+1)}{2}$

Prove that a $2^n \times 2^n$ checkerboard with one square removed can be tiled with: \square $P(\circ)$

Prove that a $2^n \times 2^n$ checkerboard with one square removed can be tiled with:

$$\frac{\text{prove: } n^n \ge n! \text{ for all } n \ge 1}{P(n) = \binom{n}{n} \ge n!} \qquad n! = n(n-1) \cdots 3 \cdot 2 \cdot 1}$$

$$\frac{P(n) = \binom{n}{n} \ge n!}{1 \ge 1!} \qquad n! = n(n-1) \cdots 3 \cdot 2 \cdot 1}$$

$$\frac{P(n) = P(n+1)}{1 \ge 1! \ge 1!} \qquad (p(n) = P(n+1))$$

$$\frac{p(n) = P(n+1)}{p(n)}$$

$$\frac{p(n) = P(n+1)}{p(n)} \qquad (p(n) = P(n+1))$$

$$\frac{p(n) = P(n+1)}{p(n)} \qquad (p(n) = P(n+1)$$

$$\frac{p(n) = P(n+1)}{p(n)} \qquad (p(n) = P(n+1)}{p(n)} \qquad (p(n) = P(n+1)$$

$$\frac{p(n) = P(n+1)}{p(n)}$$