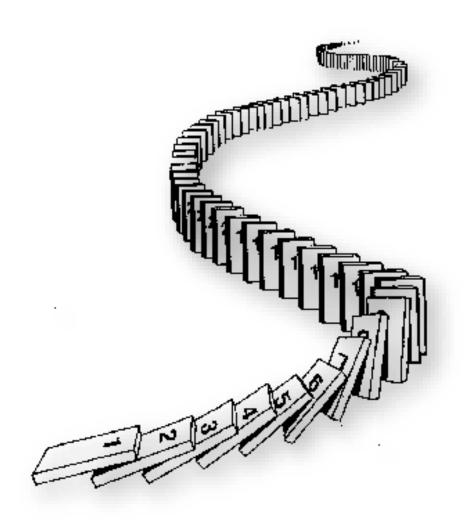
cse 311: foundations of computing

Fall 2015

Lecture 15: Induction



prove: for all n > 0, a is odd $\rightarrow a^n$ is odd

Let n > 0 be arbitrary.

Suppose that a is odd. We know that if a, b are odd, then ab is also odd.

So:
$$(\cdots ((a \cdot a) \cdot a) \cdot \cdots \cdot a) = a^n$$
 [n times]

Those "···"s are a problem! We're trying to say "we can use the same argument over and over..."

We'll come back to this.

mathematical induction

Method for proving statements about all integers ≥ 0

- A new logical inference rule!
 - It only applies over the natural numbers
 - The idea is to use the special structure of the naturals to prove things more easily
- Particularly useful for reasoning about programs!

```
for(int i=0; i < n; n++) { ... }
```

Show P(i) holds after i times through the loop

```
public int f(int x) {
   if (x == 0) { return 0; }
    else { return f(x-1)+1; }}
```

• f(x) = x for all values of $x \ge 0$ naturally shown by induction.

induction is a rule of inference

Domain: Natural Numbers O(k) holds for all even K P(0) $\forall k (P(k) \rightarrow P(k+1))$ $P(k) \stackrel{\text{def}}{=} Q(2k)$ P(0), thP(10) -> P(h+1) -> +n Q(2n) Hn P(h)

using the induction rule in a formal proof

$$P(0)$$

$$\forall k (P(k) \rightarrow P(k+1))$$

$$\therefore \forall n P(n)$$

- 1. Prove P(0)
- 2. Let k be an arbitrary integer ≥ 0
 - 3. Assume that P(k) is true
 - 4. ...
 - 5. Prove P(k+1) is true
- 6. $P(k) \rightarrow P(k+1)$
- 7. \forall k (P(k) \rightarrow P(k+1))
- 8. ∀ n P(n)

Direct Proof Rule

Intro \forall from 2-6

Induction Rule 1&7

format of an induction proof

$$P(0)$$

 $\forall k (P(k) \rightarrow P(k+1))$

$$\therefore \forall n P(n)$$

1. Prove P(0)

Base Case

- 2. Let k be an arbitrary integer ≥ 0
 - 3. Assume that P(k) is true

4. ...

5. Prove P(k+1) is true

Inductive Hypothesis

Inductive Step

- 6. $P(k) \rightarrow P(k+1)$
- 7. \forall k (P(k) \rightarrow P(k+1))

8. \forall n P(n)

Direct Proof Rule

Intro ∀ from 2-6

Induction Rule 1&7

$$1 + 2 + 4 + 8 + \cdots + 2^n$$

•
$$1 + 2 + 4 = 7$$

•
$$1+2+4+8$$
 = 15

•
$$1+2+4+8+16=31$$

Can we describe the pattern?

$$2^{n+1} - 1$$

$$1 + 2 + 4 + \cdots + 2^n = 2^{n+1} - 1$$

proving $1 + 2 + 4 + \dots + 2^n = 2^{n+1} - 1$

- We could try proving it normally...
 - We want to show that $1 + 2 + 4 + \cdots + 2^n = 2^{n+1}$.
 - So, what do we do now? We can sort of explain the pattern, but that's not a proof...
- We could prove it for n=1, n=2, n=3, ... (individually), but that would literally take forever...

inductive proof in five easy steps

Proof:

- 1. "We will show that P(n) is true for every $n \ge 0$ by **induction**."
- 2. "Base Case:" Prove P(0)
- 3. "Inductive Hypothesis:"

 Assume P(k) is true for some arbitrary integer k ≥ 0"
- 4. "Inductive Step:" Want to prove that P(k+1) is true: Use the goal to figure out what you need.
- Make sure you are using I.H. and point out where you are using it. (Don't assume P(k+1)!)
- 5. "Conclusion: Result follows by induction."

proving $1 + 2 + ... + 2^n = 2^{n+1} - 1$

$$P(h) = ((1+2+\cdots+2^{k}-1)^{k}-1)^{k}$$

Goal: $\forall n P(n)$ Donain: next, numbers

Base case: $P(6)$ is $(1=2^{k}-1=1)^{k}$ true.

Inductive hypoth: Assume $P(k)$ for some $k \ge 0$

hat. Step: By $P(k)$, we know

 $1+2+\cdots+2^{k}=2^{k+1}-1$
 $= 2\cdot 2^{k+1}-1$
 $= 2^{k+1}-1$
 $= 2^{k+1}-1$

By induction $\forall k P(k)$.

proving
$$1 + 2 + ... + 2^n = 2^{n+1} - 1$$

- 1. Let P(n) be "1 + 2 + ... + $2^n = 2^{n+1} 1$ ". We will show P(n) is true for all natural numbers by induction.
- 2. Base Case (n=0): $2^0 = 1 = 2 1 = 2^{0+1} 1$
- 3. Induction Hypothesis: Suppose that P(k) is true for some arbitrary $k \ge 0$.
- 4. Induction Step:

Goal: Show P(k+1), i.e. show
$$1 + 2 + ... + 2^k + 2^{k+1} = 2^{k+2} - 1$$

$$1 + 2 + ... + 2^{k} = 2^{k+1} - 1$$
 by IH

Adding 2^{k+1} to both sides, we get:

$$1 + 2 + ... + 2^{k} + 2^{k+1} = 2^{k+1} + 2^{k+1} - 1$$

Note that $2^{k+1} + 2^{k+1} = 2(2^{k+1}) = 2^{k+2}$.

So, we have $1 + 2 + ... + 2^k + 2^{k+1} = 2^{k+2} - 1$, which is exactly P(k+1).

5. Thus P(k) is true for all $k \in \mathbb{N}$, by induction.

another example of a pattern

•
$$2^0 - 1 = 1 - 1 = 0 = 3 \cdot 0$$

•
$$2^2 - 1 = 4 - 1 = 3 = 3 \cdot 1$$

•
$$2^4 - 1 = 16 - 1 = 15 = 3.5$$

•
$$2^6 - 1 = 64 - 1 = 63 = 3 \cdot 21$$

•
$$2^8 - 1 = 256 - 1 = 255 = 3.85$$

• ...

$$3 \left| \frac{2^{2k}-1}{2^{k}} \right|$$

So whether p(n) prove:
$$3 \mid 2^{2n} - 1$$
 for all $n \ge 0$

$$P(n) = (3 \mid 2^{2n} - 1)$$

Goal: ∀n P(n) devain: $n \ge 0$

$$P(n) = (3 \mid 2^{2n} - 1)$$

$$= (3 \mid 6^{n} + 1)$$

$$=$$

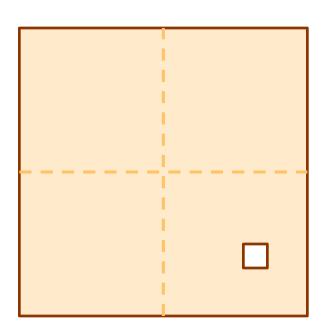
$$\Rightarrow 2^{2}(2^{2^{1}}-1) = 2^{2(k+1)}-4 = 12a$$

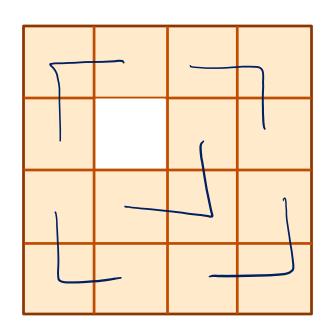
$$\Rightarrow 2^{2((k+1)}-1 = 12a+3 = 3(4a+1)$$

For all $n \ge 1$: $1 + 2 + \dots + n = \sum_{i=1}^{n} i = \frac{n(n+1)}{2}$

checkerboard tiling

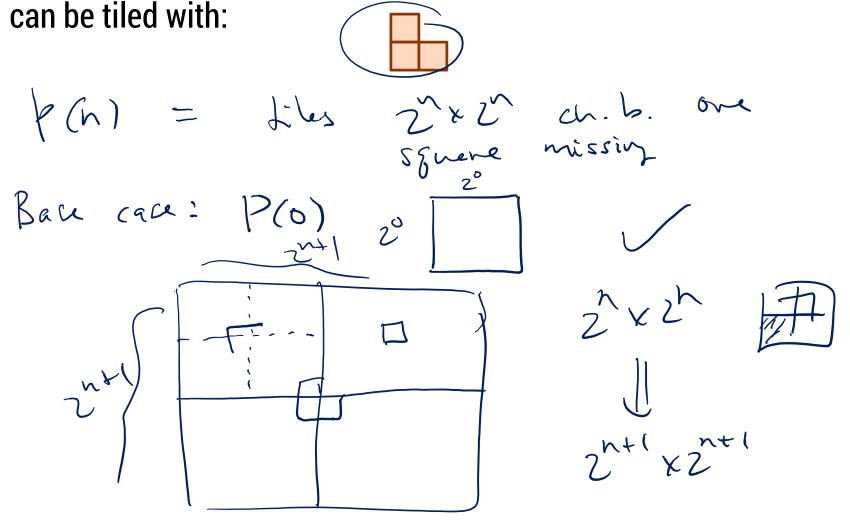
Prove that a $2^n \times 2^n$ checkerboard with one square removed can be tiled with:





checkerboard tiling

Prove that a $2^n \times 2^n$ checkerboard with one square removed



checkerboard tiling

Prove that a $2^n \times 2^n$ checkerboard with one square removed can be tiled with:

P(n) = " A 21x2" checker board w/ one square removed can be tiled by [] 11

Base case: P(0) We just have an ampty 1x 1 boards which is titled whom doing anything.

IH: Assume Ph) holds for some integer 120.

IS: Consider a 2^{hri}x 2th board with one square renoved.

By symmetry, we can assume:

Now place a block at the intersection We now have four 2" KI squares

5,52,53,54

each with one block removed.

By IH, each of Si, Sz, Ss, Sy can