cse 311: foundations of computing

Fall 2015

Lecture 14: Modular congruences

If a and b are positive integers, then $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \bmod b)$ $\operatorname{gcd}(10,12)=\operatorname{gcd}(10,2)$
Proof: $m \mathrm{mdd} d=0 \quad \bmod d=0$
By definition $a=(a \operatorname{div} b) \cdot b+(a \bmod b)$
If $d \mid a$ and $d \mid b$ then $d \mid(a \bmod b) . \subset \subseteq D$
If $d \mid b$ and $d \mid(a \bmod b)$ then $d \mid a . D \subseteq C$

$$
\begin{aligned}
& C=\{d: d|a, d| b\} \quad D=\{d: d|b, d| a \bmod b\} \\
& C \subseteq D \rightarrow C=D \\
& \max \{d \in C\}=\max \{d C D\} \\
& \operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \bmod b)
\end{aligned}
$$

```
GCD}(x,y)=GCD(y,x\operatorname{mod}y
int GCD(int a, int b){ /* a >= b, b > 0 */
    int tmp;
    while (b > 0) { a,b
        tmp = a % b;
        a = b;
        b = tmp;
    }
            new }a>
                                new }b=a\operatorname{mod}b\mathrm{ .
    return a;
}
    gcd}(12,10
    a=12,b=10
    a=10,b}b=
    a=2,b=0
    returns 2.
```


solving modular equations

Goal: Solve $a x \equiv b(\bmod m)$ for unknown x.

Idea: Find a number z such that $z a \equiv 1(\bmod m)$.
Multiply both sides by $z: \quad 3 x=4 \bmod 7$

$$
\begin{aligned}
& \Rightarrow \begin{aligned}
a x & \equiv b(\bmod m) \quad 3^{-1}=5 \\
z a x & \equiv z b(\bmod m) \quad 3.5 \equiv 1 \bmod 7
\end{aligned} \\
& x \equiv z b(\bmod m) \begin{array}{r}
3: 3 x \equiv 4.5 \equiv 6 \\
x \equiv 6 \bmod z
\end{array}
\end{aligned}
$$

If such an element exists, we use the notation a^{-1} so that

$$
a^{-1} a \equiv a a^{-1} \equiv 1(\bmod m)
$$

a^{-1} is called the multiplicative inverse of a modulo m.

Theorem: a has a multiplicative inverse modulo m if and only if $\operatorname{gcd}(a, m)=1$.
only if part is easy
if $\operatorname{gcd}(a, m) \neq 1$ then a may not have multiplication incuse

If $\operatorname{ged}(a, m)=1 \rightarrow a^{-1}$ exists
Suppose $a=2$ $m=4$
$2^{-1} \operatorname{dogh}$ 't exist no ansurar $2 x=1 \operatorname{mad} 4$.

Bezout's Theorem

If a and b are positive integers, then there exist integers \boldsymbol{s} and \boldsymbol{t} such that

$\operatorname{gcd}(a, b)=s a+t b$

For example: $1=\operatorname{gcd}(27,35)=\underbrace{\frac{13}{s}}_{\frac{13}{s} \cdot 27}+(\underbrace{-10}_{350} \cdot 35=1$
If $\operatorname{gcd}(a, m)=1$ then we can write 351

$$
1=\operatorname{gcd}(a, m)=s a+t m \equiv s a \bmod m
$$

for some integers s, t.

$$
s a \equiv 1 \bmod m
$$

So $s a \equiv 1(\bmod m)$.
Thus $a^{-1}=s$ is the inverse!
extended Euclidean algorithm

$$
\operatorname{gcd}(35,27)=(-10) .35+13.27
$$

$$
B=27^{-1} \bmod 35
$$

- Can use Euclid's Algorithm to find s, t such that

$$
\operatorname{gcd}(a, b)=s a+t b
$$

- egg. $\operatorname{gcd}(35,27): \quad 35=1 \cdot 27+8$

$$
35-1 \cdot 27=8
$$

$=\operatorname{gcd}(27,8)$
$27=3 \cdot 8+3$
27-3•8
$=\operatorname{gcd}(8,3) \quad 8=2 \cdot 3+2$
$8-2 \cdot 3=2$
$=\operatorname{gcd}(3,2) \quad 3=1 \cdot 2+1$
$=\operatorname{gcd}(2,1) \quad 2=2 \cdot 1+0$

- Substifutule doack-ffom the bottom

$$
\begin{aligned}
& 1=3-1 \cdot 2=3-1(8-2 \cdot 3)=(-1) \cdot 8+3 \cdot 3 \\
&=(-1) \cdot 8+3(27-3 \cdot 8)=3 \cdot 27+(-10) \cdot 8 \\
&=3 \cdot 27+(-10) \cdot(35-1 \cdot 27)=-10 \cdot 35+\frac{13}{\uparrow} \cdot 27 \\
& 13.27 \equiv 1 \mathrm{mod} 35
\end{aligned}
$$

Solving $a x \equiv b(\bmod m)$ for unknown x when

 $\operatorname{gcd}(a, m)=1$.1. Find s such that $s a+t m=1$
2. Compute $a^{-1}=s \bmod m$, the multiplicative inverse of a modulo m
3. Set $x=\left(a^{-1} \cdot b\right) \bmod m$

$$
\begin{aligned}
x & \equiv a^{-1} b \bmod \operatorname{m} \\
a x & \equiv a\left(a^{-1} b\right) \bmod \operatorname{m} \\
& \equiv\left(a a^{-1}\right) b \bmod m \\
& \equiv b \bmod m
\end{aligned}
$$

$$
15.7 x \equiv 15.3=45 \bmod 26
$$

$$
x \equiv 45 \equiv 19 \bmod 26
$$

Solve:

$$
\begin{array}{lll}
& 7 x \equiv 3(\bmod 26) & \\
\operatorname{gcd}(26,7) & 26=3.7+5 & 5=26-3.7 \\
=\operatorname{gcd}(7,5) & 7=1.5+2 & 2=7-1.5 \\
=\operatorname{gcd}(5,2) & 5=2.2+1 & 1=5-2.2 \\
=\operatorname{gcd}(2,1) & 2=2.1+0 & \\
=\operatorname{gcd}(1,0)=1 & &
\end{array}
$$

Find sit, $\quad s 7+t 26=1$

$$
7^{-1}=-11 \equiv 15 \quad \bmod \quad 26
$$

$$
\begin{aligned}
1=5-2 \cdot 2 & =5+(-2)(7-1 \cdot 5) \\
& =(-2) 7+3 \cdot 5 \\
& =(-2) 7+3 \cdot(26-3 \cdot 7) \\
& =\frac{3}{5} \cdot 26+\frac{(-1)}{7} \cdot 7
\end{aligned}
$$

multiplicative cipher: $f(x)=a x \bmod m$

For a multiplicative cipher to be invertible: If m is prime

$$
\begin{array}{ll}
f:\{0, \ldots, m-1\} \rightarrow\{0, \ldots, m-1\} & \forall 0 \leqslant a \leq m-1 \\
& \operatorname{gcd}(a, m)=1 \\
f(x)=a x \bmod m & \rightarrow f \text { is one-to-om }
\end{array}
$$

must be one-to-one and onto.

$$
\left(a^{-1}(a x \operatorname{mad} m)\right) \bmod m=x
$$

Lemma: If there is an integer b such that $a b \bmod m=1$, then the function $f(x)=a x \bmod m$ is one-to-one and onto.
Enough to show f is one-to-one.
$a x_{1} \bmod m=a x_{2} \bmod m$

$$
\begin{aligned}
& a x_{1} \bmod m=a x_{2} \bmod m \\
& a x_{1} \equiv a x_{2} \bmod m \xrightarrow{a}\left(x_{1}-x_{2}\right) \equiv 0 \operatorname{modm} \\
& a^{-1} a\left(x_{1}-x_{2}\right) \equiv 0 \operatorname{modm}
\end{aligned}
$$

could we prove this?

If a and b are positive integers, then there exist integers \boldsymbol{s} and \boldsymbol{t} such that

$$
\operatorname{gcd}(a, b)=s a+t b
$$

Need a new inference rule.

mathematical induction

Method for proving statements about all integers ≥ 0

- A new logical inference rule!
- It only applies over the natural numbers
- The idea is to use the special structure of the naturals to prove things more easily
- Particularly useful for reasoning about programs!
for (int i=0; i < n; n++) \{ ... \}
- Show P(i) holds after itimes through the loop public int f (int x$)$ \{

```
if (x == 0) { return 0; }
    else { return f(x-1)+1; }}
```

- $f(x)=x$ for all values of $x \geq 0$ naturally shown by induction.

prove: for all $n>0, a$ is odd $\rightarrow a^{n}$ is odd

Let $n>0$ be arbitrary.
Suppose that a is odd. We know that if a, b are odd, then $a b$ is also odd.

So: $(\cdots \cdot((a \cdot a) \cdot a) \cdot \cdots \cdot a)=a^{n} \quad[n$ times $]$

Those "..."s are a problem! We're trying to say "we can use the same argument over and over..."
We'll come back to this.

induction is a rule of inference

Domain: Natural Numbers

$$
\begin{aligned}
& P(0) \\
& \forall k(P(k) \rightarrow P(k+1)) \\
& \therefore \forall n P(n)
\end{aligned}
$$

using the induction rule in a formal proof

$$
\begin{aligned}
& P(0) \\
& \forall k(P(k) \rightarrow P(k+1))
\end{aligned}
$$

$$
\therefore \forall n P(n)
$$

1. Prove $P(0)$
2. Let k be an arbitrary integer ≥ 0
3. Assume that $P(k)$ is true
4. ...
5. Prove $P(k+1)$ is true
6. $P(k) \rightarrow P(k+1)$
7. $\forall \mathrm{k}(\mathrm{P}(\mathrm{k}) \rightarrow \mathrm{P}(\mathrm{k}+1))$
8. $\forall \mathrm{nP}(\mathrm{n})$

Direct Proof Rule
Intro \forall from 2-6
Induction Rule 1\&7

format of an induction proof

$$
\begin{aligned}
& P(0) \\
& \forall k(P(k) \rightarrow P(k+1))
\end{aligned}
$$

$\therefore \forall n P(n)$

inductive proof in five easy steps

Proof:

1. "We will show that $P(\mathrm{n})$ is true for every $\mathrm{n} \geq 0$ by induction."
2. "Base Case:" Prove P(0)
3. "Inductive Hypothesis:"

Assume $P(k)$ is true for some arbitrary integer $k \geq 0 "$
4. "Inductive Step:" Want to prove that $P(k+1)$ is true:

Use the goal to figure out what you need.
Make sure you are using I.H. and point out where you are using
it. (Don't assume $P(k+1)$!)
5. "Conclusion: Result follows by induction."

$$
1+2+4+8+\cdots+2^{n}
$$

- 1

$$
=1
$$

- $1+2$
$=3$
- $1+2+4$
$=7$
- $1+2+4+8=15$
- $1+2+4+8+16=31$

Can we describe the pattern?

$$
1+2+4+\cdots+2^{n}=2^{n+1}-1
$$

proving $1+2+4+\ldots+2^{n}=2^{n+1}-1$

- We could try proving it normally...
- We want to show that $1+2+4+\cdots+2^{n}=2^{n+1}-1$.
- So, what do we do now? We can sort of explain the pattern, but that's not a proof...
- We could prove it for $n=1, n=2, n=3, \ldots$
(individually), but that would literally take forever...

inductive proof in five easy steps

Proof:

1. "We will show that $P(\mathrm{n})$ is true for every $\mathrm{n} \geq 0$ by induction."
2. "Base Case:" Prove P(0)
3. "Inductive Hypothesis:"

Assume $P(k)$ is true for some arbitrary integer $k \geq 0 "$
4. "Inductive Step:" Want to prove that $P(k+1)$ is true:

Use the goal to figure out what you need.
Make sure you are using I.H. and point out where you are using
it. (Don't assume $P(k+1)$!)
5. "Conclusion: Result follows by induction."
proving $1+2+\ldots+2^{\mathrm{n}}=2^{\mathrm{n}+1}-1$

$$
\text { proving } 1+2+\ldots+2^{n}=2^{n+1}-1
$$

1. Let $P(n)$ be " $1+2+\ldots+2^{n}=2^{n+1}-1$ ". We will show $P(n)$ is true for all natural numbers by induction.
2. Base Case $(n=0): 2^{0}=1=2-1=2^{0+1}-1$
3. Induction Hypothesis: Suppose that $\mathrm{P}(\mathrm{k})$ is true for some arbitrary $\mathrm{k} \geq 0$.
4. Induction Step:

Goal: Show $P(k+1)$, i.e. show $1+2+\ldots+2^{k}+2^{k+1}=2^{k+2}-1$

$$
1+2+\ldots+2^{k}=2^{k+1}-1 \text { by IH }
$$

Adding 2^{k+1} to both sides, we get:

$$
1+2+\ldots+2^{k}+2^{k+1}=2^{k+1}+2^{k+1}-1
$$

Note that $2^{k+1}+2^{k+1}=2\left(2^{k+1}\right)=2^{k+2}$.
So, we have $1+2+\ldots+2^{k}+2^{k+1}=2^{k+2}-1$, which is exactly $P(k+1)$.
5. Thus $P(k)$ is true for all $k \in \mathbb{N}$, by induction.

another example of a pattern

- $2^{0}-1=1-1=0=3 \cdot 0$
- $2^{2}-1=4-1=3=3 \cdot 1$
- $2^{4}-1=16-1=15=3 \cdot 5$
- $2^{6}-1=64-1=63=3 \cdot 21$
- $2^{8}-1=256-1=255=3 \cdot 85$

For all $n \geq 1: 1+2+\cdots+n=\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$

