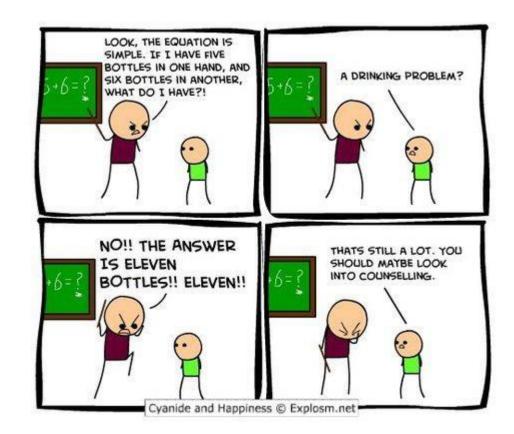
Fall 2015 Lecture 14: Modular congruences



If a and b are positive integers, then

$$gcd(a,b) = gcd(b, a \mod b)$$

 $gcd(10,12) = gcd(10,2)$
Proof: and $d=0$
By definition $a = (a \operatorname{div} b) \cdot b + (a \mod b)$
If $d \mid a$ and $d \mid b$ then $d \mid (a \mod b)$. $C \subseteq D$
If $d \mid b$ and $d \mid (a \mod b)$ then $d \mid a$. $D \subseteq C$
 $C \subseteq \{d: d \mid a, d \mid b\}$ $D = \{d: d \mid b, d \mid a \mod b\}$
 $C \subseteq \{D \longrightarrow C = D$
 $D \subseteq C$ max $\{d \in C3 \ge max \{d \in D3 \}$
 $gcd(a,b) = gcd(b, a \mod b)$

```
GCD(x, y) = GCD(y, x \mod y)
```

```
int GCD(int a, int b){ /* a >= b, b > 0 */
   int tmp;
   while (b > 0) \{ \alpha, \beta \}
      tmp = a \% b;
      a = b;
                      new a = b
new b = a mod b.
      b = tmp;
   }
   return a;
}
   gcd (12,10)
   G = 12, b = 10
   a=10, b=2
   a=2, b=0
    returns 2.
```

Example: GCD(660, 126)

Goal: Solve $ax \equiv b \pmod{m}$ for unknown *x*.

Idea: Find a number z such that $za \equiv 1 \pmod{m}$.

Multiply both sides by z: $3x = 4 \mod 7$

$$ax \equiv b \pmod{m} \quad 3^{3} = 5$$

$$zax \equiv zb \pmod{m} \quad 3 \cdot 5 \equiv 1 \mod 7$$

$$x \equiv zb \pmod{m} \quad 5 \cdot 3x \equiv 4 \cdot 5 \equiv 6 \mod 7$$

$$x \equiv 6 \mod 7$$

If such an element exists, we use the notation a^{-1} so that $a^{-1}a \equiv aa^{-1} \equiv 1 \pmod{m}$

 a^{-1} is called the **multiplicative inverse of** *a* **modulo** *m*.

Theorem: a has a multiplicative inverse modulo m if and only if gcd(a, m) = 1. only if part is easy if $gcd(a,m) \neq 1$ this a may not have multiplication invise I Suppose G=2 m=4 If ged (a, m) = 1 -> a exists (2⁻¹ doesti't. exist $2x \equiv 1 \mod 4$. If *a* and *b* are positive integers, then there exist integers *s* and *t* such that gcd(a,b) = sa + tb

For example:
$$1 = \gcd(27, 35) = 13 \cdot 27 + (-10) \cdot 35 = 1$$

If $\gcd(a, m) = 1$ then we can write 351
 $1 = \gcd(a, m) = sa + tm \equiv 5a \mod m$
for some integers s, t .
So $sa \equiv 1 \pmod{m}$.
Thus $a^{-1} = s$ is the inverse!

extended Euclidean algorithm gcd (35,27)= (-10).35+ 13.27 13= 27 mod 35 • Can use Euclid's Algorithm to find s, t such that gcd(a,b) = sa + tb• e.g. gcd(35,27): $35 = 1 \cdot 27 + 8$ 35 - 1 • 27 = 8^r $= g(d(27,8)) \quad 27=3\cdot8+3$ 27- <mark>3</mark> • 8 =-3 = gcd(8,3) 8 = 2 • 3 + 2 8 - 2 • 3 = 2- $= g(d(3,2)) = 3 = 1 \cdot 2 + 1$ 3 - 1 • 2 $2 = 2 \cdot 1 + 0$ =g(d(2,1)) Substitute back from the bottom $1 = 3 - 1 \cdot 2 = 3 - 1 (8 - 2 \cdot 3) = (-1) \cdot 8 + 3 \cdot 3$ $= (-1) \cdot 8 + 3 (27 - 3 \cdot 8) = 3 \cdot 27 + (-10) \cdot 8$ $= 3 \cdot 27 + (-10) \cdot (35 - 1 \cdot 27) = -10 \cdot 35 + 13 \cdot 27$ $13.27 \equiv 1 \mod 35$

Solving $ax \equiv b \pmod{m}$ for unknown x when gcd(a, m) = 1.

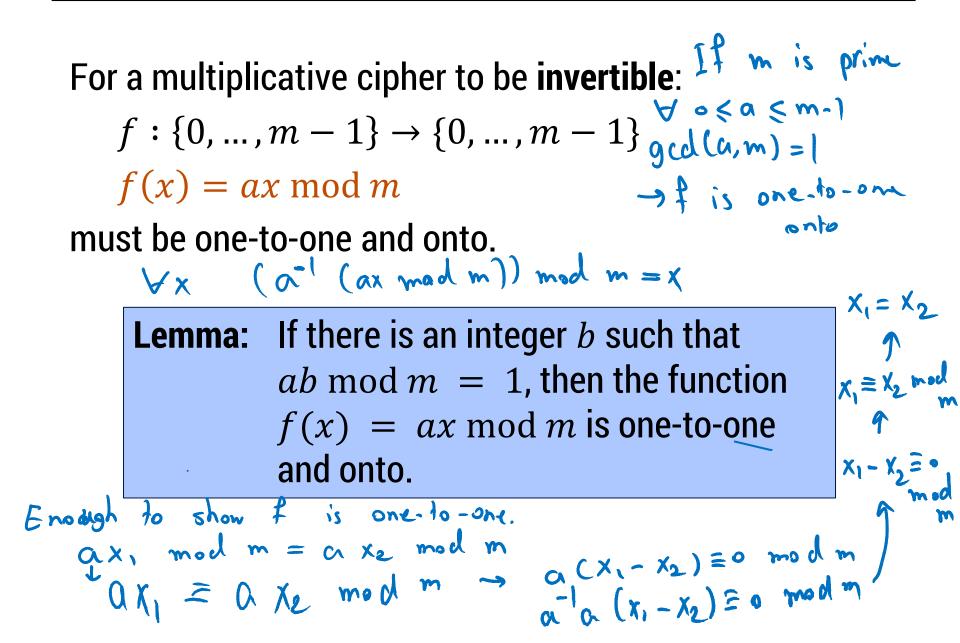
- 1. Find *s* such that sa + tm = 1
- 2. Compute $a^{-1} = s \mod m$, the multiplicative inverse of *a* modulo *m*
- 3. Set $x = (a^{-1} \cdot b) \mod m$

$$\begin{array}{l} x \equiv a^{-1}b \mod m \\ ax \equiv a (a^{-1}b) \mod m \\ \equiv (a a^{-1})b \mod m \\ \equiv b \mod m \end{array}$$

$$15.7 \times = 15.3 = 45 \mod 26$$

 $\chi = 45 = 19 \mod 26$

Solve: $7x \equiv 3 \pmod{26}$ 5=26-3.7 26 = 3.7 + 5gcd(26,7)2=7-1.5 7 = 1.5 + 2= gcd(7,5)1 = 5 - 2.25=2.2+1 = gcd(5,2)2 = 2.1 + 0= gcd(2,1) = gcd(1,0)= l 7 = -11 = 15 mod Find s.t. s7+ t26=1 1 = 5 - 2, 2 = 5 + (-2) (7 - 1.5)= (-2)7 + 3.5= (-2) 7 + 3. (26 - 3.7) $= \frac{3 \cdot 26}{6} + (-11) \cdot 7$



If *a* and *b* are positive integers, then there exist integers *s* and *t* such that gcd(a,b) = sa + tb

Method for proving statements about all integers ≥ 0

- A new logical inference rule!
 - It only applies over the natural numbers
 - The idea is to **use** the special structure of the naturals to prove things more easily

- Particularly useful for reasoning about programs!

for(int i=0; i < n; n++) { ... }</pre>

Show P(i) holds after i times through the loop
 public int f(int x) {

if (x == 0) { return 0; }

else { return f(x-1)+1; }}

• f(x) = x for all values of $x \ge 0$ naturally shown by induction.

Let n > 0 be arbitrary.

Suppose that *a* is odd. We know that if *a*, *b* are odd, then *ab* is also odd.

So:
$$(\cdots ((a \cdot a) \cdot a) \cdot \cdots \cdot a) = a^n$$
 [*n* times]

Those "…"s are a problem! We're trying to say "we can use the same argument over and over..." We'll come back to this.

induction is a rule of inference

Domain: Natural Numbers

$$\begin{array}{l} P(0) \\ \forall \; k \; (P(k) \; \rightarrow \; P(k+1)) \end{array}$$

 $\therefore \forall n P(n)$

using the induction rule in a formal proof

$$\begin{array}{l} P(0) \\ \forall \; k \; (P(k) \; \rightarrow \; P(k+1)) \end{array}$$

$$\therefore \forall n P(n)$$

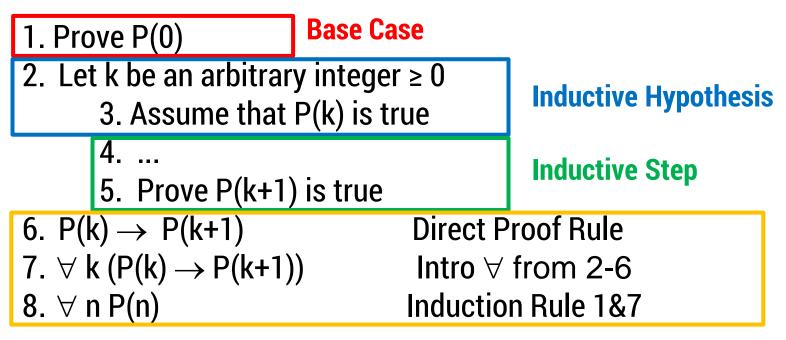
- 1. Prove P(0)
- 2. Let k be an arbitrary integer ≥ 0
 - 3. Assume that P(k) is true
 - 4. ...
 - 5. Prove P(k+1) is true
- 6. $P(k) \rightarrow P(k+1)$
- 7. \forall k (P(k) \rightarrow P(k+1)) 8. \forall n P(n)

Direct Proof Rule Intro ∀ from 2-6 Induction Rule 1&7

format of an induction proof

$$\begin{array}{l} P(0) \\ \forall \; k \; (P(k) \; \rightarrow \; P(k+1)) \end{array}$$

$$\therefore \forall n P(n)$$



Conclusion

Proof:

- 1. "We will show that P(n) is true for every $n \ge 0$ by induction."
- 2. "Base Case:" Prove P(0)
- 3. "Inductive Hypothesis:"

Assume P(k) is true for some arbitrary integer $k \ge 0$ "

4. "Inductive Step:" Want to prove that P(k+1) is true:

Use the goal to figure out what you need.

Make sure you are using I.H. and point out where you are using it. (Don't assume P(k+1)!)

5. "Conclusion: Result follows by induction."

 $1 + 2 + 4 + 8 + \dots + 2^n$

- 1 = 1
- 1+2 = 3
- 1+2+4 = 7
- 1+2+4+8 = 15
- 1 + 2 + 4 + 8 + 16 = 31

Can we describe the pattern? $1 + 2 + 4 + \dots + 2^n = 2^{n+1} - 1$

- We could try proving it normally...
 - We want to show that $1 + 2 + 4 + \dots + 2^{n} = 2^{n+1} 1$.
 - So, what do we do now? We can sort of explain the pattern, but that's not a proof...
- We could prove it for n=1, n=2, n=3, ... (individually), but that would literally take forever...

Proof:

- 1. "We will show that P(n) is true for every $n \ge 0$ by induction."
- 2. "Base Case:" Prove P(0)
- 3. "Inductive Hypothesis:"

Assume P(k) is true for some arbitrary integer $k \ge 0$ "

4. "Inductive Step:" Want to prove that P(k+1) is true:

Use the goal to figure out what you need.

Make sure you are using I.H. and point out where you are using it. (Don't assume P(k+1)!)

5. "Conclusion: Result follows by induction."

- 1. Let P(n) be "1 + 2 + ... + $2^n = 2^{n+1} 1$ ". We will show P(n) is true for all natural numbers by induction.
- 2. Base Case (n=0): $2^0 = 1 = 2 1 = 2^{0+1} 1$
- 3. Induction Hypothesis: Suppose that P(k) is true for some arbitrary $k \ge 0$.
- 4. Induction Step:

Goal: Show P(k+1), i.e. show $1 + 2 + ... + 2^{k} + 2^{k+1} = 2^{k+2} - 1$

 $1 + 2 + ... + 2^k = 2^{k+1} - 1$ by IH

Adding 2^{k+1} to both sides, we get:

 $1 + 2 + ... + 2^{k} + 2^{k+1} = 2^{k+1} + 2^{k+1} - 1$ Note that $2^{k+1} + 2^{k+1} = 2(2^{k+1}) = 2^{k+2}$.

So, we have $1 + 2 + ... + 2^{k} + 2^{k+1} = 2^{k+2} - 1$, which is exactly P(k+1).

5. Thus P(k) is true for all $k \in \mathbb{N}$, by induction.

another example of a pattern

- $2^0 1 = 1 1 = 0 = 3 \cdot 0$
- $2^2 1 = 4 1 = 3 = 3 \cdot 1$
- $2^4 1 = 16 1 = 15 = 3 \cdot 5$
- $2^6 1 = 64 1 = 63 = 3 \cdot 21$
- $2^8 1 = 256 1 = 255 = 3 \cdot 85$
- • •

prove: $3 \mid 2^{2n} - 1$ for all $n \ge 0$

For all
$$n \ge 1$$
: $1 + 2 + \dots + n = \sum_{i=1}^{n} i = \frac{n(n+1)}{2}$