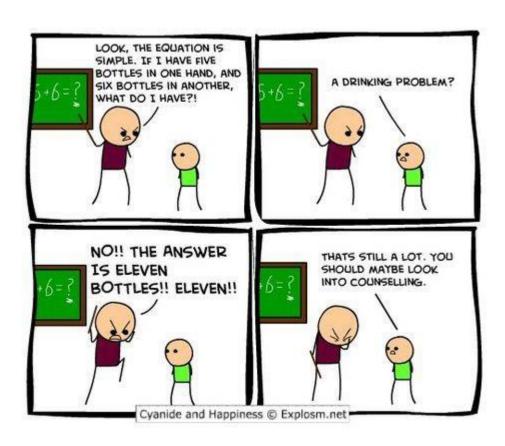
cse 311: foundations of computing

Fall 2015

Lecture 14: Modular congruences



If
$$a$$
 and b are positive integers, then $gcd(a,b) = gcd(b,a \mod b)$

$$gcd(10,12) = gcd(10,2)$$

Proof:

By definition $a = (a \operatorname{div} b) \cdot b + (a \operatorname{mod} b)$ If $d \mid a$ and $d \mid b$ then $d \mid (a \operatorname{mod} b)$. $C \subseteq D$ If $d \mid b$ and $d \mid (a \operatorname{mod} b)$ then $d \mid a$. $D \subseteq C$

$$C = \{d: dla, dlb \}$$
 $O = \{d: dlb, dla mod b \}$.
 $C = \{d: dla, dlb \}$ $O = \{d: dlb, dla mod b \}$.
 $O = \{d: dla, dlb \}$ $O = \{d: dlb, dla mod b \}$.
 $O = \{d: dla, dlb \}$ $O = \{d: dlb, dla mod b \}$.
 $O = \{d: dla, dlb \}$ $O = \{d: dlb, dla mod b \}$.

```
GCD(x, y) = GCD(y, x mod y)
```

```
int GCD(int a, int b){ /* a >= b, b > 0 */
   int tmp;
   while (b > 0) {
      tmp = a \% b;
      a = b; new a \ge b
      b = tmp; new b = tmp = a mad b,
   return a;
   GCD (12,10)
   tmp=2 0=10 b=2
   trop = 10 mod 2 = 0, on = 2 b= trop = 0

b = 0 return 2 = a.
                                        Example: GCD(660, 126)
```

solving modular equations

3x = 2 mod 7

Goal: Solve $ax \equiv b \pmod{m}$ for unknown $x \pmod{m}$.

Idea: Find a number z such that $za \equiv 1 \pmod{m}$.

Multiply both sides by z:

$$ax \equiv b \pmod{m}$$

$$5 = 5$$

$$zax \equiv zb \pmod{m}$$

$$3.5 \equiv 1 \mod 7$$

$$x \equiv zb \pmod{m}$$

$$5.3 \neq 2.5$$

$$x \equiv 3 \mod 7$$

If such an element exists, we use the notation a^{-1} so that

$$a^{-1}a \equiv aa^{-1} \equiv 1 \pmod{m}$$

 a^{-1} is called the multiplicative inverse of a modulo m.

Theorem: a has a multiplicative inverse modulo m if and only if gcd(a, m) = 1.

only if part is easy ged
$$(a, m) \neq 1$$
 then a may not have multiplicative investigated and $a = 1$ and $a = 1$ and $a = 1$

Bezout's Theorem

If a and b are positive integers, then there exist integers s and t such that

$$gcd(a,b) = sa + tb$$

For example:
$$1 = \gcd(27, 35) = \underbrace{13 \cdot 27 + (-10) \cdot 35}_{350} = \underbrace{1}_{350}$$

If $\gcd(a, m) = 1$ then we can write

 $1 = \gcd(a, m) = sa + tm = 1$

for some integers s, t .

So $sa \equiv 1 \pmod{m}$.

Thus $a^{-1} = s$ is the inverse!

<

extended Euclidean algorithm

• Can use Euclid's Algorithm to find s, t such that

$$gcd(a, b) = sa + tb$$

• e.g.
$$gcd(35,27)$$
: $35 = 1 \cdot 27 + 8$ $35 - 1 \cdot 27 = 8 - 27 - 3 \cdot 8$ $27 - 3 \cdot 8 = 3$ 27

• Substitute back from the bottom

$$1 = 3 - 1 \cdot 2 = 3 - 1 (8 - 2 \cdot 3) = (-1) \cdot 8 + 3 \cdot 3$$

$$= (-1) \cdot 8 + 3 (27 - 3 \cdot 8) = 3 \cdot 27 + (-10) \cdot 8$$

$$= 3 \cdot 27 + (-10) \cdot (35 - 1 \cdot 27) = -10 \cdot 35 + 13 \cdot 27$$

solving modular equations

Solving $ax \equiv b \pmod{m}$ for unknown x when gcd(a, m) = 1.

- 1. Find s such that sa + tm = 1
- 2. Compute $a^{-1} = s \mod m$, the multiplicative inverse of $a \mod m$
- 3. Set $x = (a^{-1} \cdot b) \mod m$

$$15.7 \times = 3.15 = 45 \mod 26$$

 $x = 19 \mod 26$

Solve:
$$7x \equiv 3 \pmod{26}$$

 $\gcd(26, 7)$ $26 = 3.7 + 5$ $5 = 26 - 3.7$
 $= \gcd(7,5)$ $7 = 5 + 2$ $2 = 7 - 5$
 $= \gcd(5,2)$ $5 = 2.2 + 1$ $1 = 5 - 2.2$
 $= \gcd(2,1)$ $2 = 2.1 + 0$
 $= \gcd(1,0) = 1$
Find 5,t such that $5.7 + 1.26 = 1$ $3.26 + (-11).7 = 1$
 $1 = 5 + (-2).2 = 5 + (-2) (7 - 5)$
 $= 3.5 + (-2).7$
 $= 3.(26 - 3.7) + (-2).7$
 $= 3.26 + (-11).7$

multiplicative cipher: $f(x) = ax \mod m$

 $X_1 = X_2$

For a multiplicative cipher to be invertible:

$$f: \{0, \dots, m-1\} \rightarrow \{0, \dots, m-1\} \forall o \leqslant a \leqslant m-1$$

$$f(x) = ax \mod m$$

must be one-to-one and onto.

Lemma: If there is an integer b such that $ab \mod m = 1$, then the function $f(x) = ax \mod m$ is one-to-one and onto.

It enough to show f is one-to-one. $a \times_i \mod m = a \times_2 \mod m$ $a \times_i \mod m = a \times_2 \mod m$ $a \times_i = a \times_2 \mod m = a \times_1 - x_2 = a \mod m$ $a \times_i = a \times_2 \mod m = a \times_2 - a \times_1 - x_2 = a \mod m$ $a \times_i = a \times_2 \mod m = a \times_2 - a \times_1 - x_2 = a \mod m$ $a \times_i = a \times_2 - a \times_2 - a \times_1 - a \times_2 = a \mod m$ $a \times_i = a \times_2 - a \times_2 - a \times_1 - a \times_2 = a \mod m$ $a \times_i = a \times_2 - a \times_2 - a \times_2 = a \times_1 - a \times_2 = a \times_2 = a \times_1 - a \times_2 = a$

could we prove this?

If a and b are positive integers, then there exist integers s and t such that gcd(a,b) = sa + tb

Need a **new inference rule**.

mathematical induction

Method for proving statements about all integers ≥ 0

- A new logical inference rule!
 - It only applies over the natural numbers
 - The idea is to use the special structure of the naturals to prove things more easily
- Particularly useful for reasoning about programs!

```
for(int i=0; i < n; n++) { ... }
```

Show P(i) holds after i times through the loop

```
public int f(int x) {
   if (x == 0) { return 0; }
    else { return f(x-1)+1; }}
```

• f(x) = x for all values of $x \ge 0$ naturally shown by induction.

Let n > 0 be arbitrary.

Suppose that a is odd. We know that if a, b are odd, then ab is also odd.

So:
$$(\cdots ((a \cdot a) \cdot a) \cdot \cdots \cdot a) = a^n$$
 [n times]

Those "···"s are a problem! We're trying to say "we can use the same argument over and over..."

We'll come back to this.

induction is a rule of inference

Domain: Natural Numbers

$$P(0)$$

$$\forall k (P(k) \rightarrow P(k+1))$$

 $\therefore \forall n P(n)$

using the induction rule in a formal proof

$$P(0)$$

$$\forall k (P(k) \rightarrow P(k+1))$$

$$\therefore \forall n P(n)$$

- 1. Prove P(0)
- 2. Let k be an arbitrary integer ≥ 0
 - 3. Assume that P(k) is true
 - 4. ...
 - 5. Prove P(k+1) is true
- 6. $P(k) \rightarrow P(k+1)$
- 7. \forall k (P(k) \rightarrow P(k+1))
- 8. ∀ n P(n)

Direct Proof Rule Intro ∀ from 2-6 Induction Rule 1&7

format of an induction proof

$$P(0)$$

 $\forall k (P(k) \rightarrow P(k+1))$

$$\therefore \forall n P(n)$$

1. Prove P(0)

Base Case

- 2. Let k be an arbitrary integer ≥ 0
 - 3. Assume that P(k) is true

4. ...

5. Prove P(k+1) is true

Inductive Hypothesis

Inductive Step

- 6. $P(k) \rightarrow P(k+1)$
- 7. \forall k (P(k) \rightarrow P(k+1))

8. \forall n P(n)

Direct Proof Rule

Intro ∀ from 2-6

Induction Rule 1&7

inductive proof in five easy steps

Proof:

- 1. "We will show that P(n) is true for every $n \ge 0$ by **induction**."
- 2. "Base Case:" Prove P(0)
- 3. "Inductive Hypothesis:"
 Assume P(k) is true for some arbitrary integer k ≥ 0"
- 4. "Inductive Step:" Want to prove that P(k+1) is true: Use the goal to figure out what you need.

Make sure you are using I.H. and point out where you are using it. (Don't assume P(k+1)!)

5. "Conclusion: Result follows by induction."

$$1 + 2 + 4 + 8 + \cdots + 2^n$$

•
$$1 + 2 + 4 = 7$$

•
$$1+2+4+8$$
 = 15

•
$$1+2+4+8+16=31$$

Can we describe the pattern?

$$1 + 2 + 4 + \cdots + 2^n = 2^{n+1} - 1$$

proving $1 + 2 + 4 + ... + 2^n = 2^{n+1} - 1$

- We could try proving it normally...
 - We want to show that $1 + 2 + 4 + \cdots + 2^n = 2^{n+1} 1$.
 - So, what do we do now? We can sort of explain the pattern, but that's not a proof...
- We could prove it for n=1, n=2, n=3, ... (individually), but that would literally take forever...

inductive proof in five easy steps

Proof:

- 1. "We will show that P(n) is true for every $n \ge 0$ by **induction**."
- 2. "Base Case:" Prove P(0)
- 3. "Inductive Hypothesis:"
 Assume P(k) is true for some arbitrary integer k ≥ 0"
- 4. "Inductive Step:" Want to prove that P(k+1) is true: Use the goal to figure out what you need.

Make sure you are using I.H. and point out where you are using it. (Don't assume P(k+1)!)

5. "Conclusion: Result follows by induction."

proving
$$1 + 2 + ... + 2^n = 2^{n+1} - 1$$

proving
$$1 + 2 + ... + 2^n = 2^{n+1} - 1$$

- 1. Let P(n) be "1 + 2 + ... + $2^n = 2^{n+1} 1$ ". We will show P(n) is true for all natural numbers by induction.
- 2. Base Case (n=0): $2^0 = 1 = 2 1 = 2^{0+1} 1$
- 3. Induction Hypothesis: Suppose that P(k) is true for some arbitrary $k \ge 0$.
- 4. Induction Step:

Goal: Show P(k+1), i.e. show
$$1 + 2 + ... + 2^k + 2^{k+1} = 2^{k+2} - 1$$

$$1 + 2 + ... + 2^{k} = 2^{k+1} - 1$$
 by IH

Adding 2^{k+1} to both sides, we get:

$$1 + 2 + ... + 2^{k} + 2^{k+1} = 2^{k+1} + 2^{k+1} - 1$$

Note that $2^{k+1} + 2^{k+1} = 2(2^{k+1}) = 2^{k+2}$.

So, we have $1 + 2 + ... + 2^k + 2^{k+1} = 2^{k+2} - 1$, which is exactly P(k+1).

5. Thus P(k) is true for all $k \in \mathbb{N}$, by induction.

another example of a pattern

•
$$2^0 - 1 = 1 - 1 = 0 = 3 \cdot 0$$

•
$$2^2 - 1 = 4 - 1 = 3 = 3 \cdot 1$$

•
$$2^4 - 1 = 16 - 1 = 15 = 3.5$$

•
$$2^6 - 1 = 64 - 1 = 63 = 3 \cdot 21$$

•
$$2^8 - 1 = 256 - 1 = 255 = 3.85$$

• ...

prove: $3 \mid 2^{2n} - 1$ for all $n \ge 0$

For all $n \ge 1$: $1 + 2 + \dots + n = \sum_{i=1}^{n} i = \frac{n(n+1)}{2}$