
cse 311: foundations of computing 

Fall 2015 
Lecture 14:  Modular congruences 



Useful GCD Fact 

If 𝑎 and 𝑏 are positive integers, then        
   gcd 𝑎, 𝑏 = gcd⁡(𝑏, 𝑎⁡mod⁡𝑏) 

Proof: 
 By definition  𝑎 = 𝑎⁡div⁡𝑏 •⁡𝑏 + (𝑎⁡mod⁡𝑏) 
 If 𝑑 ∣ 𝑎 and 𝑑 ∣ 𝑏 then 𝑑 ∣ 𝑎⁡mod⁡𝑏 . 
 If 𝑑 ∣ 𝑏 and 𝑑 ∣ 𝑎⁡mod⁡𝑏  then 𝑑 ∣ 𝑎. 



GCD(x, y) = GCD(y, x mod y) 

 
int GCD(int a, int b){ /* a >= b, b > 0 */ 
 int tmp; 
 while (b > 0) { 
  tmp = a % b; 
  a = b; 
  b = tmp; 
 } 
 return a; 
} 
 

Example: GCD(660, 126) 

Euclid’s Algorithm 



solving modular equations 

Goal:  Solve 𝑎𝑥 ≡ 𝑏⁡(mod⁡𝑚) for unknown 𝑥. 
  Idea:  Find a number 𝑧 such that 𝑧𝑎 ≡ 1⁡(mod⁡𝑚). 
  Multiply both sides by 𝑧: 
       𝑎𝑥 ≡ 𝑏⁡ mod⁡𝑚  
         𝑧𝑎𝑥 ≡ 𝑧𝑏⁡ mod⁡𝑚  
                   𝑥 ≡ 𝑧𝑏⁡(mod⁡𝑚) 
  If such an element exists, we use the notation 𝑎−1 so that 

𝑎−1𝑎 ≡ 𝑎𝑎−1 ≡ 1⁡(mod⁡𝑚) 
𝑎−1 is called the multiplicative inverse of 𝒂 modulo 𝒎. 



When is there an inverse?  

Theorem:  𝑎 has a multiplicative inverse modulo 𝑚 if and 
    only if gcd 𝑎,𝑚 = 1. 



Bezout’s Theorem 

If a and b are positive integers, then there 
exist integers s and t such that  

gcd(a,b) = sa + tb 

If gcd 𝑎,𝑚 = 1 then we can write 
1 = gcd 𝑎,𝑚 = 𝑠𝑎 + 𝑡𝑚 

for some integers 𝑠, 𝑡. 
So 𝑠𝑎 ≡ 1⁡ mod⁡𝑚 .  
Thus 𝑎−1 = 𝑠 is the inverse! 

For example:  1 = gcd 27, 35 = 13 ⋅ 27 + −10 ⋅ 35 



extended Euclidean algorithm 

• Can use Euclid’s Algorithm to find 𝑠, 𝑡 such that 
     gcd 𝑎, 𝑏 = 𝑠𝑎 + 𝑡𝑏 

• e.g.  gcd(35,27):   35 = 1 • 27 + 8       35 - 1 • 27 = 8 
                                    27= 3 • 8 + 3            27- 3 • 8    = 3 
                                     8  = 2 • 3 + 2           8 - 2 • 3     = 2 
                                     3  = 1 • 2 + 1            3 - 1 • 2     = 1  
                                     2  = 2 • 1 + 0   
• Substitute back from the bottom                       

 1 = 3 - 1 • 2  =  3 – 1 (8 - 2 • 3)   = (-1) • 8 + 3 • 3 
                      = (-1) • 8 + 3 (27- 3 • 8 )  =   3 • 27 +  (-10) • 8         
                      = 3 • 27 +  (-10) • (35 - 1 • 27)  =  -10 • 35 + 13 • 27 



solving modular equations 

Solving 𝑎𝑥 ≡ 𝑏⁡(mod⁡𝑚) for unknown 𝑥 when 
gcd 𝑎,𝑚 = 1. 
 

1. Find 𝑠 such that 𝑠𝑎 + 𝑡𝑚 = 1 
2. Compute 𝑎−1 = 𝑠⁡mod⁡𝑚, the multiplicative inverse of 

𝑎 modulo 𝑚 
3. Set 𝑥 = 𝑎−1 ⋅ 𝑏 ⁡mod⁡𝑚 



example 

Solve:  7𝑥 ≡ 3⁡(mod⁡26) 



multiplicative cipher:  𝑓(𝑥) ⁡= ⁡𝑎𝑥⁡mod⁡𝑚 

For a multiplicative cipher to be invertible: 
 𝑓 ∶ 0, … ,𝑚 − 1 → {0,… ,𝑚 − 1} 
 𝑓 𝑥 = 𝑎𝑥⁡mod⁡𝑚 
must be one-to-one and onto. 

Lemma:  If there is an integer 𝑏 such that  
   𝑎𝑏⁡mod⁡𝑚⁡ = ⁡1, then the function  
   𝑓(𝑥) ⁡= ⁡𝑎𝑥⁡mod⁡𝑚⁡is one-to-one  
   and onto. 



could we prove this? 

If a and b are positive integers, then there 
exist integers s and t such that  

gcd(a,b) = sa + tb 

Need a new inference rule. 



mathematical induction 

Method for proving statements about all integers ≥ 0 
– A new logical inference rule! 

• It only applies over the natural numbers 
• The idea is to use the special structure of the naturals 

to prove things more easily 
– Particularly useful for reasoning about programs! 

  for(int i=0; i < n; n++) { … } 

• Show P(i) holds after i times through the loop 
  public int f(int x) {  

      if (x == 0) { return 0; } 

       else { return f(x–1)+1; }} 

• f(x) = x for all values of x ≥ 0 naturally shown by induction. 



prove: for all 𝑛 > 0, 𝑎 is odd → 𝑎𝑛 is odd 

Let 𝑛 > 0 be arbitrary.  
Suppose that 𝑎 is odd.  We know that if 𝑎, 𝑏 are odd, 
then 𝑎𝑏 is also odd. 
 
So:    ⋯⋅ 𝑎 ⋅ 𝑎 ⋅ 𝑎 ⋅ ⋯ ⋅ 𝑎 = 𝑎𝑛    [𝑛 times] 
 
Those “⋯”s are a problem!  We’re trying to say “we can 
use the same argument over and over…” 
We’ll come back to this. 



induction is a rule of inference 

 𝑃(0) 
 ⁡𝑘⁡(𝑃(𝑘) ⁡→ ⁡𝑃(𝑘 + 1)) 
 

⁡⁡𝑛⁡𝑃(𝑛) 

Domain: Natural Numbers 



using the induction rule in a formal proof 

1.  Prove P(0) 
2. Let k be an arbitrary integer ≥ 0 
           3.  Assume that P(k) is true 
           4.  ... 
           5.  Prove P(k+1) is true 
6. P(k)   P(k+1)                          Direct Proof Rule 
7.  k (P(k)  P(k+1))                 Intro  from 2-6 

8.  n P(n)                                     Induction Rule 1&7 

 𝑃(0) 
 ⁡𝑘⁡(𝑃(𝑘) ⁡→ ⁡𝑃(𝑘 + 1)) 
 

⁡⁡𝑛⁡𝑃(𝑛) 



format of an induction proof 

1. Prove P(0) 
2. Let k be an arbitrary integer ≥ 0 
           3. Assume that P(k) is true 
           4.  ... 
           5.  Prove P(k+1) is true 
6. P(k)   P(k+1)                        Direct Proof Rule 
7.  k (P(k)  P(k+1))                Intro  from 2-6 

8.  n P(n)                                    Induction Rule 1&7 

Base Case 

Inductive Hypothesis 

Inductive Step 

Conclusion 

 𝑃(0) 
 ⁡𝑘⁡(𝑃(𝑘) ⁡→ ⁡𝑃(𝑘 + 1)) 
 

⁡⁡𝑛⁡𝑃(𝑛) 



inductive proof in five easy steps 

Proof:  
1. “We will show that P(n) is true for every n ≥ 0 by induction.” 
2. “Base Case:” Prove P(0) 
3. “Inductive Hypothesis:” 
  Assume P(k) is true for some arbitrary integer k ≥ 0”    
4. “Inductive Step:” Want to prove that P(k+1) is true: 
      Use the goal to figure out what you need.  
 Make sure you are using I.H. and point out where you are using 
it.   (Don’t assume P(k+1) !) 
5. “Conclusion: Result follows by induction.” 



1 + 2 + 4 + 8 + ⋯+ 2n  

• 1                            = 1 
• 1 + 2                = 3 
• 1 + 2 + 4    = 7 
• 1 + 2 + 4 + 8         = 15 
• 1 + 2 + 4 + 8 + 16   = 31 

 
Can we describe the pattern? 

1 + 2 + 4 + ⋯ + 2n = 2n+1 – 1 



proving 1 + 2 + 4 + … + 2n = 2n+1 – 1 

• We could try proving it normally… 
– We want to show that 1 + 2 + 4 + ⋯ + 2n  = 2n+1 -1. 
– So, what do we do now?  We can sort of explain the pattern, 
 but that’s not a proof… 

• We could prove it for n=1, n=2, n=3, … 
 (individually), but that would literally take forever… 

 



inductive proof in five easy steps 

Proof:  
1. “We will show that P(n) is true for every n ≥ 0 by induction.” 
2. “Base Case:” Prove P(0) 
3. “Inductive Hypothesis:” 
  Assume P(k) is true for some arbitrary integer k ≥ 0”    
4. “Inductive Step:” Want to prove that P(k+1) is true: 
      Use the goal to figure out what you need.  
 Make sure you are using I.H. and point out where you are using 
it.   (Don’t assume P(k+1) !) 
5. “Conclusion: Result follows by induction.” 



proving 1 + 2 + … + 2n = 2n+1 – 1 



proving 1 + 2 + … + 2n = 2n+1 – 1 

1. Let P(n) be “1 + 2 + … + 2n = 2n+1 – 1”.  We will show P(n) is true for 
all natural numbers by induction. 

2. Base Case (n=0):    20 = 1 = 2 – 1 = 20+1 – 1 
3. Induction Hypothesis:  Suppose that P(k) is true for some                                            

arbitrary k ≥ 0. 
4. Induction Step:   
          Goal:  Show P(k+1), i.e. show 1 + 2 + … + 2k + 2k+1 = 2k+2 – 1 
  1 + 2 + … + 2k = 2k+1 – 1   by IH 
 Adding 2k+1 to both sides, we get: 
  1 + 2 + … + 2k + 2k+1 = 2k+1 + 2k+1 – 1 
 Note that 2k+1 + 2k+1 = 2(2k+1) = 2k+2. 
 So, we have  1 + 2 + … + 2k + 2k+1 = 2k+2 – 1, which is  
 exactly P(k+1). 
  5.  Thus P(k) is true for all k ∈ℕ, by induction. 



another example of a pattern 

• 20
⁡
− ⁡1⁡ = ⁡1⁡ − ⁡1⁡ = ⁡0⁡ = ⁡3 ⋅ 0 

• 22
⁡
− ⁡1⁡ = ⁡4⁡⁡⁡ − ⁡1⁡ = ⁡3⁡ = ⁡3 ⋅ 1 

• 24
⁡
− ⁡1⁡ = ⁡16⁡ − ⁡1⁡ = ⁡15⁡ = ⁡3 ⋅ 5⁡⁡ 

• 26
⁡
− ⁡1⁡ = ⁡64⁡ − ⁡1⁡ = ⁡63⁡ = ⁡3 ⋅ 21 

• 28
⁡
− ⁡1⁡ = ⁡256⁡ − ⁡1⁡ = ⁡255⁡ = ⁡3 ⋅ 85 

• ⋯ 



prove:  3 ∣ 22𝑛 − 1 for all 𝑛 ≥ 0 



For all 𝑛 ≥ 1: ⁡1 + 2 +⋯+ 𝑛 =  𝑖𝑛
𝑖=1 =

𝑛 𝑛+1

2
 


