cse 311: foundations of computing

Spring 2015

Lecture 11: Modular arithmetic and applications

arithmetic mod 7

$$a +_{7} b = (a + b) \mod 7$$

 $a \times_{7} b = (a \times b) \mod 7$

+	0	1	2	3	4	5	6
0	0	1	2	3	4	5	6
1	1	2	3	4	5	6	0
2	2	3	4	5	6	0	1
3	3	4	5	6	0	1	2
4	4	5	6	0	1	2	3
5	5	6	0	1	2	3	4
6	6	0	1	2	3	4	5

Х	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	0	6	5	4	3	2	1

review: division theorem

Let a be an integer and d a positive integer. Then there are *unique* integers q and r, with $0 \le r < d$, such that a = d q + r.

$$q = a \operatorname{div} d$$
 $r = a \operatorname{mod} d$

Note: $r \ge 0$ even if a < 0. Not quite the same as $a \ % \ d$.

review: modular congruence

Let a and b be integers, and m be a positive integer. We say a is **congruent** to b **modulo** m if m divides a - b. We use the notation $a \equiv b \pmod{m}$ to indicate that a is congruent to b modulo m.

modular arithmetic: examples

$A \equiv 0 \pmod{2}$

This statement is the same as saying "A is even"; so, any A that is even (including negative even numbers) will work.

$1 \equiv 0 \pmod{4}$

This statement is false. If we take it mod 1 instead, then the statement is true.

A
$$\equiv$$
 -1 (mod 17)
If A = 17x - 1 = 17(x-1) + 16 for an integer x, then it works.
Note that (m - 1) mod m
= ((m mod m) + (-1 mod m)) mod m
= (0 + -1) mod m
= -1 mod m

Theorem: Let a and b be integers, and let m be a positive integer. Then $a \equiv b \pmod{m}$ if and only if a mod $m = b \pmod{m}$.

Proof:

Theorem: Let a and b be integers, and let m be a positive integer. Then $a \equiv b \pmod{m}$ if and only if a mod m = b mod m.

```
Proof: ⇒
    Suppose that a ≡ b (mod m).
    By definition: a ≡ b (mod m) implies m | (a − b)
        which by definition implies that a − b = km for some integer k.
    Therefore a = b + km.
    Taking both sides modulo m we get
        a mod m = (b+km) mod m = b mod m
```

Theorem: Let a and b be integers, and let m be a positive integer. Then $a \equiv b \pmod{m}$ if and only if a mod $m = b \pmod{m}$.

Proof:

Theorem: Let a and b be integers, and let m be a positive integer. Then $a \equiv b \pmod{m}$ if and only if a mod $m = b \pmod{m}$.

```
Proof: \Leftarrow
Suppose that a mod m = b mod m.
By the division theorem, a = mq + (a \mod m) and
b = ms + (b \mod m) for some integers q,s.
a - b = (mq + (a \mod m)) - (mr + (b \mod m))
= m(q - r) + (a \mod m - b \mod m)
= m(q - r) since a \mod m = b \mod m
Therefore m | (a-b) and so a \equiv b \pmod{m}
```

consistency of addition

Let m be a positive integer. If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $a + c \equiv b + d \pmod{m}$

consistency of addition

Let m be a positive integer. If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $a + c \equiv b + d \pmod{m}$

Suppose $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$. Unrolling definitions gives us some k such that a - b = km, and some j such that c - d = jm.

Adding the equations together gives us (a + c) - (b + d) = m(k + j). Now, re-applying the definition of mod gives us $a + c \equiv b + d \pmod{m}$.

consistency of multiplication

Let m be a positive integer. If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $ac \equiv bd \pmod{m}$

```
Suppose a \equiv b \pmod{m} and c \equiv d \pmod{m}.
Unrolling definitions gives us some k such that a - b = km, and some j such that c - d = jm.
```

```
Then, a = km + b and c = jm + d.

Multiplying both together gives us

ac = (km + b)(jm + d) = kjm<sup>2</sup> + kmd + jmb + bd
```

Rearranging gives us ac - bd = m(kjm + kd + jb). Using the definition of mod gives us ac \equiv bd (mod m).

example

Let n be an integer.

Prove that $n^2 \equiv 0 \pmod{4}$ or $n^2 \equiv 1 \pmod{4}$

example

Let n be an integer.

Prove that $n^2 \equiv 0 \pmod{4}$ or $n^2 \equiv 1 \pmod{4}$

Case 1 (n is even):

Suppose $n \equiv 0 \pmod{2}$.

Then, n = 2k for some integer k.

So, $n^2 = (2k)^2 = 4k^2$.

So, by definition of congruence, $n^2 \equiv 0 \pmod{4}$.

Case 2 (n is odd):

Suppose $n \equiv 1 \pmod{2}$.

Then, n = 2k + 1 for some integer k.

So, $n^2 = (2k + 1)^2 = 4k^2 + 4k + 1 = 4(k^2 + k) + 1$.

So, by definition of congruence, $n^2 \equiv 1 \pmod{4}$.

n-bit unsigned integer representation

• Represent integer x as sum of powers of 2:

```
If x = \sum_{i=0}^{n-1} b_i 2^i where each b_i \in \{0,1\} then representation is b_{n-1} \cdots b_2 b_1 b_0
```

$$99 = 64 + 32 + 2 + 1$$

 $18 = 16 + 2$

• For n = 8:

99: 0110 0011

18: 0001 0010

sign-magnitude integer representation

n-bit signed integers

Suppose
$$-2^{n-1} < x < 2^{n-1}$$

First bit as the sign, n-1 bits for the value

$$99 = 64 + 32 + 2 + 1$$

 $18 = 16 + 2$

For n = 8:

99: 0110 0011

-18: 1001 0010

Any problems with this representation?

two's complement representation

n-bit signed integers, first bit will still be the sign bit

```
Suppose 0 \le x < 2^{n-1}, x is represented by the binary representation of x Suppose 0 \le x \le 2^{n-1}, -x is represented by the binary representation of 2^n - x
```

Key property: Two's complement representation of any number y is equivalent to y mod 2ⁿ so arithmetic works mod 2ⁿ

```
99 = 64 + 32 + 2 + 1
18 = 16 + 2
```

For n = 8: 99: 0110 0011 -18: 1110 1110

sign-magnitude vs. two's complement

Two's complement

two's complement representation

- For $0 < x \le 2^{n-1}$, -x is represented by the binary representation of $2^n x$
- To compute this: Flip the bits of x then add 1:
 - All 1's string is $2^n 1$, so Flip the bits of $x = \text{replace } x \text{ by } 2^n - 1 - x$

basic applications of mod

- Hashing
- Pseudo random number generation
- Simple cipher

hashing

Scenario:

Map a small number of data values from a large domain $\{0, 1, ..., M-1\}$ into a small set of locations $\{0, 1, ..., N-1\}$ so one can quickly check if some value is present.

Scenario:

Map a small number of data values from a large domain $\{0, 1, ..., M-1\}$ into a small set of locations $\{0, 1, ..., N-1\}$ so one can quickly check if some value is present

- $hash(x) = x \mod p$ for p a prime close to n
 - or hash $(x) = (ax + b) \mod p$
- Depends on all of the bits of the data
 - helps avoid collisions due to similar values
 - need to manage them if they occur

pseudo-random number generation

Linear Congruential method:

$$x_{n+1} = (a x_n + c) \bmod m$$

Choose random x_0 , a, c, m and produce a long sequence of x_n 's

simple ciphers

- Caesar cipher, A = 1, B = 2, . . .
 - HELLO WORLD
- Shift cipher
 - $f(p) = (p + k) \mod 26$
 - $-f^{-1}(p) = (p-k) \mod 26$
- More general
 - $-f^{-1}(p) = (ap + b) \mod 26$

modular exponentiation mod 7

Х	1	2	3	4	5	6
1						
3						
4						
5 6						
6						

а	a ¹	a ²	a ³	a ⁴	a ⁵	a ⁶
1						
2						
3						
4						
5						
6						

modular exponentiation mod 7

Х	1	2	3	4	5	6
1	1	2	3	4	5	6
2	2	4	6	1	3	5
3	3	6	2	5	1	4
4	4	1	5	2	6	3
5	5	3	1	6	4	2
6	6	5	4	3	2	1

a	a ¹	a ²	a ³	a ⁴	a ⁵	a^6
1						
2						
3						
4						
5						
6						

modular exponentiation mod 7

Х	1	2	3	4	5	6
1	1	2	3	4	5	6
2	2	4	6	1	3	5
3	3	6	2	5	1	4
4	4	1	5	2	6	3
5	5	3	1	6	4	2
6	6	5	4	3	2	1

а	a ¹	a ²	a ³	a ⁴	a ⁵	a^6
1	1	1	1	1	1	1
2	2	4	1	2	4	1
3	3	2	6	4	5	1
4	4	2	1	4	2	1
5	5	4	6	2	3	1
6	6	1	6	1	6	1