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Lecture 11:  Modular arithmetic and applications



arithmetic mod 7

a +7 b = (a + b) mod 7
a 7 b = (a  b) mod 7

+ 0 1 2 3 4 5 6

0 0 1 2 3 4 5 6

1 1 2 3 4 5 6 0

2 2 3 4 5 6 0 1

3 3 4 5 6 0 1 2

4 4 5 6 0 1 2 3

5 5 6 0 1 2 3 4

6 6 0 1 2 3 4 5

X 0 1 2 3 4 5 6

0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6

2 0 2 4 6 1 3 5

3 0 3 6 2 5 1 4

4 0 4 1 5 2 6 3

5 0 5 3 1 6 4 2

6 0 6 5 4 3 2 1

1

2

34

5

6

0



review: division theorem

Let a be an integer and d a positive integer.  

Then there are unique integers q and r, with 

0 ≤ r < d, such that a = d q + r.

q = a div d r = a mod d

Note: r ≥ 0 even if a < 0.  
Not quite the same as a % d.



review: modular congruence

Let a and b be integers, and m be a positive integer.

We say a is congruent to b modulo m if m divides a – b.  

We use the notation a ≡ b (mod m) to indicate that a is 

congruent to b modulo m.



modular arithmetic: examples

A ≡ 0 (mod 2)
This statement is the same as saying “A is even”; so, any

A that is even (including negative even numbers) will work.

1 ≡ 0 (mod 4)
This statement is false.  If we take it mod 1 instead, then the 

statement is true.

A ≡ -1 (mod 17)
If A = 17x – 1 = 17(x-1) + 16 for an integer x, then it works.  

Note that (m – 1) mod m

= ((m mod m) + (-1 mod m)) mod m

= (0 + -1) mod m

= -1 mod m



congruence and residues

Theorem: Let a and b be integers, and let m be a 

positive integer.  Then a ≡ b (mod m) if and only if 

a mod m = b mod m.

Proof:



congruence and residues

Theorem: Let a and b be integers, and let m be a 

positive integer.  Then a ≡ b (mod m) if and only if 

a mod m = b mod m.

Proof:    ⇒
Suppose that a ≡ b (mod m).
By definition: a ≡ b (mod m) implies m | (a – b)

which by definition implies that a – b = km for some integer k.
Therefore a = b + km. 
Taking both sides modulo m we get 

a mod m = (b+km) mod m = b mod m



congruence and residues

Proof:

Theorem: Let a and b be integers, and let m be a 

positive integer.  Then a ≡ b (mod m) if and only if 

a mod m = b mod m.



congruence and residues

Proof:   ⇐
Suppose that a mod m = b mod m.
By the division theorem, a = mq + (a mod m) and

b = ms + (b mod m) for some integers q,s.
a – b =   (mq + (a mod m)) – (mr + (b mod m))

=   m(q – r) + (a mod m – b mod m)
=   m(q – r)   since   a mod m = b mod m

Therefore m | (a-b)  and so 𝑎 ≡ 𝑏 (mod 𝑚)

Theorem: Let a and b be integers, and let m be a 

positive integer.  Then a ≡ b (mod m) if and only if 

a mod m = b mod m.



consistency of addition

Let m be a positive integer.  If a ≡ b (mod m) and     

c ≡ d (mod m), then a + c ≡ b + d (mod m)



consistency of addition

Let m be a positive integer.  If a ≡ b (mod m) and     

c ≡ d (mod m), then a + c ≡ b + d (mod m)

Suppose a ≡ b (mod m) and c ≡ d (mod m). 
Unrolling definitions gives us some k such that
a – b = km, and some j such that c – d = jm.

Adding the equations together gives us 
(a + c) – (b + d) = m(k + j).  Now, re-applying the definition of 
mod gives us a + c ≡ b + d (mod m).



consistency of multiplication

Let m be a positive integer.  If a ≡ b (mod m) and     

c ≡ d (mod m), then ac ≡ bd (mod m)

Suppose a ≡ b (mod m) and c ≡ d (mod m).
Unrolling definitions gives us some k such that
a – b = km, and some j such that c – d = jm.

Then, a = km + b and c = jm + d. 
Multiplying both together gives us 

ac = (km + b)(jm + d) = kjm2 + kmd + jmb + bd

Rearranging gives us ac – bd = m(kjm + kd + jb).
Using the definition of mod gives us ac ≡ bd (mod m).



example

Let 𝑛 be an integer.

Prove that 𝑛2 ≡ 0 (mod 4) or 𝑛2 ≡ 1 (mod 4)



example

Let 𝑛 be an integer.

Prove that 𝑛2 ≡ 0 (mod 4) or 𝑛2 ≡ 1 (mod 4)

Case 1 (n is even):
Suppose n ≡ 0 (mod 2).  
Then, n = 2k for some integer k.
So, n2 = (2k)2 = 4k2. 
So, by definition of congruence, n2 ≡ 0 (mod 4).

Case 2 (n is odd):
Suppose n ≡ 1 (mod 2).  
Then, n = 2k + 1 for some integer k.
So, n2 = (2k + 1)2 = 4k2 + 4k + 1 = 4(k2 + k) + 1. 
So, by definition of congruence, n2 ≡ 1 (mod 4).



n-bit unsigned integer representation

• Represent integer x as sum of powers of 2:
If 𝑥 =  𝑖=0𝑛−1 𝑏𝑖2

𝑖 where each bi ∈ {0,1}
then representation is bn-1 ⋯ b2 b1 b0

99 = 64 + 32 + 2 + 1
18 = 16 + 2

• For n = 8:

99:  0110  0011
18:    0001  0010



sign-magnitude integer representation

n-bit signed integers
Suppose −2𝑛−1 < 𝑥 < 2𝑛−1
First bit as the sign, n-1 bits for the value

99 = 64 + 32 + 2 + 1
18 = 16 + 2

For n = 8:

99:     0110  0011
-18: 1001  0010

Any problems with this representation?



two’s complement representation

n-bit signed integers, first bit will still be the sign bit

Suppose 0 ≤ 𝑥 < 2𝑛−1, 
𝑥 is represented by the binary representation of 𝑥

Suppose 0 ≤ 𝑥 ≤ 2𝑛−1, 
−𝑥 is represented by the binary representation of 2𝑛 − 𝑥

99 = 64 + 32 + 2 + 1
18 = 16 + 2

For n = 8:
99:   0110 0011
-18:    1110 1110

Key property: Two’s complement representation of any number y 

is equivalent to y mod 2n so arithmetic works mod 2n



sign-magnitude vs. two’s complement

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

1111 1110 1101 1100 1011 1010 1001 0000 0001 0010 0011 0100 0101 0110 0111

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

1000 1001 1010 1011 1100 1101 1110 1111 0000 0001 0010 0011 0100 0101 0110 0111

Sign-Magnitude

Two’s complement



two’s complement representation

• For 0 < 𝑥 ≤ 2𝑛−1, −𝑥 is represented by the binary
representation of 2𝑛 − 𝑥

• To compute this:  Flip the bits of 𝑥 then add 1:
– All 1’s string is 2𝑛 − 1, so

Flip the bits of 𝑥  replace 𝑥 by  2𝑛 − 1 − 𝑥



basic applications of mod

• Hashing 
• Pseudo random number generation
• Simple cipher



hashing

Scenario:  
Map a small number of data values from a large domain 
0, 1,… ,𝑀 − 1 into a small set of locations 0,1,… , 𝑛 − 1 so 

one can quickly  check if some value is present.



hashing

Scenario:  
Map a small number of data values from a large domain 
0, 1,… ,𝑀 − 1 into a small set of locations 0,1,… , 𝑛 − 1 so 

one can quickly  check if some value is present

• hash 𝑥 = 𝑥 mod 𝑝 for 𝑝 a prime close to 𝑛
– or hash 𝑥 = (𝑎𝑥 + 𝑏) mod 𝑝

• Depends on all of the bits of the data 
– helps avoid collisions due to similar values
– need to manage them if they occur



pseudo-random number generation

Linear Congruential method:

𝑥𝑛+1 = 𝑎 𝑥𝑛 + 𝑐 mod 𝑚

Choose random 𝑥0, 𝑎, 𝑐, 𝑚 and produce
a long sequence of 𝑥𝑛 ’s

[good for some applications, really bad for many others]



simple ciphers

• Caesar cipher,  A = 1, B = 2, . . .

– HELLO WORLD

• Shift cipher
– 𝑓(p) = (p + k) mod 26

– 𝑓−1(p) = (p – k) mod 26

• More general
– 𝑓−1(p) = (ap + b) mod 26



modular exponentiation mod 7

X 1 2 3 4 5 6

1

2

3

4

5

6

a a1 a2 a3 a4 a5 a6

1

2

3

4

5

6



X 1 2 3 4 5 6

1 1 2 3 4 5 6

2 2 4 6 1 3 5

3 3 6 2 5 1 4

4 4 1 5 2 6 3

5 5 3 1 6 4 2

6 6 5 4 3 2 1

a a1 a2 a3 a4 a5 a6

1

2

3

4

5

6

modular exponentiation mod 7



X 1 2 3 4 5 6

1 1 2 3 4 5 6

2 2 4 6 1 3 5

3 3 6 2 5 1 4

4 4 1 5 2 6 3

5 5 3 1 6 4 2

6 6 5 4 3 2 1

a a1 a2 a3 a4 a5 a6

1 1 1 1 1 1 1

2 2 4 1 2 4 1

3 3 2 6 4 5 1

4 4 2 1 4 2 1

5 5 4 6 2 3 1

6 6 1 6 1 6 1

modular exponentiation mod 7


