Power set of a set A =set of all subsets of A

$$\mathcal{P}(A) = \{ B : B \subseteq A \}$$

e.g. Days =
$$\{M, W, F\}$$

$$\mathcal{P}(Days) = \{\emptyset, \{M\}, \{W\}, \{F\}, \{M, W\}, \{W, F\}, \{M, F\}, \{M, W, F\}\} \}$$

e.g.
$$\mathcal{P}(\emptyset) = \{ \emptyset \} \neq \emptyset$$

 $\phi \leq \phi$

$$\frac{\mathcal{P}(A) \subseteq \mathcal{P}(\mathcal{P}(A))}{\text{false}}$$

 $|A| \notin n$, what is $|\mathcal{P}(A)|$?

$$\mathcal{P}(A) \in \mathcal{P}(\mathcal{P}(A))$$

$$|P(A)| = 2^{k} \text{ size of } |A \times A \times A \times A \times A|?$$

$$|P(P(A))| = 2^{k} \quad |A \times A \times A|?$$

$$|P(P(A))| = 2^{k} \quad |A \times A|$$

$$|P(A)| = 2^{k} \quad |A \times A|$$

$$|A \times A| = k^{2}$$

cse 311: foundations of computing

Fall 2015

Lecture 10: Functions, Modular arithmetic

So far:

- Propositional logic
- Logic to build circuits
- Predicates and quantifiers
- Proof systems and logical inference
- Basic set theory

empty domains

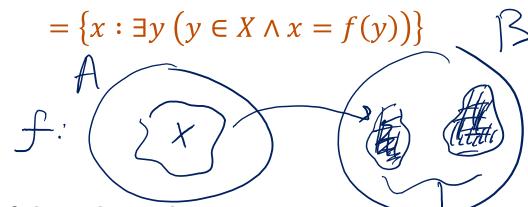
Question: If the domain of discourse is empty and *P* is a predicate, what is the truth value of:

$$\exists x P(x)$$

$$\forall x P(x)$$

A **function** from A to B:

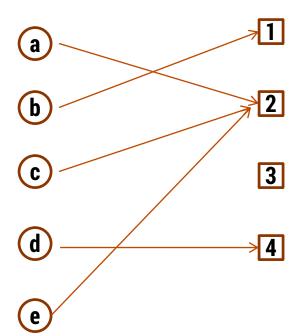
- Every element of A is assigned to exactly one element of B.
- We write $f: A \rightarrow B$.
- "Image of X under f'' = "f(X)"



- **Domain** of f is A
- Codomain of f is B
- Image of f = Image of domain under f
 - = all the elements pointed to by something in the domain.

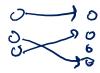
 \boldsymbol{A}

B



Image({a}) =
$$\{2\}$$

Image({a, e}) = $\{2\}$
Image({a, b}) = $\{1, 2\}$
Image(A) = $\{1, 2, 4\}$

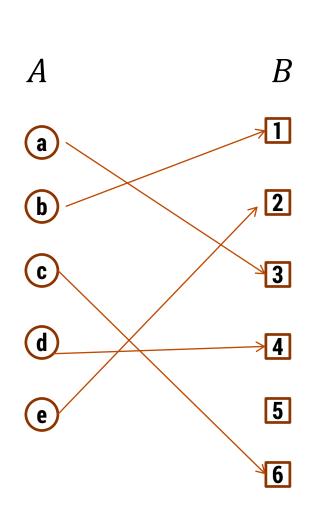


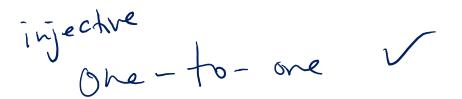
injections and surjections

A function $f: A \to B$ is one-to-one (or, injective) if every output corresponds to at most one input, i.e. $f(x) = f(x') \Rightarrow x = x'$ for all $x, x' \in A$.

A function $f: A \to B$ is onto (or, surjective) if every output gets hit, i.e. for every $y \in B$, there exists $x \in A$ such that f(x) = y.

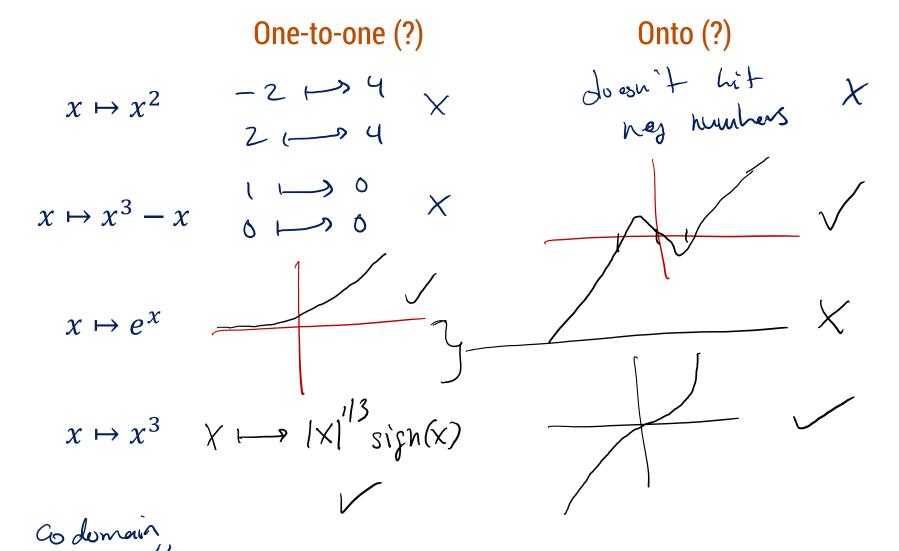
is this function one-to-one? is it onto?





It is one-to-pive, because nothing in B is pointed to by multiple elements of A.

It is not onto, because 5 is not pointed to by anything.



Domain: Reals

"number theory" (and applications to computing)

How whole numbers work

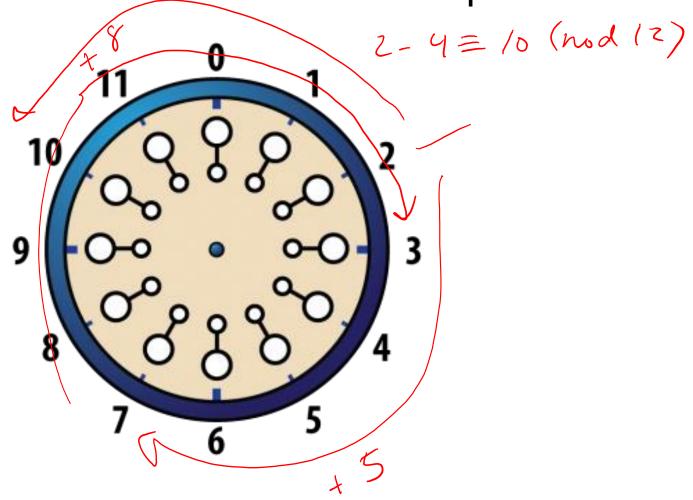
[fascinating, deep, weird area of mathematics that no one understands, but the basics are easy and really useful]

- Many significant applications
 - Cryptography [this is how SSL works]
 - Hashing
 - Security
 - Error-correcting codes [this is how your bluray player works]
- Important tool set

```
public class Test {
   final static int SEC_IN_YEAR = 364*24*60*60;
   public static void main(String args[]) {
       System.out.println(
           "I will be alive for at least " +
           SEC IN YEAR * 101 + " seconds."
       );
           ----jGRASP exec: java Test
         I will be alive for at least -186619904 seconds.
----jGRASP: operation complete.
```

modular arithmetic

Arithmetic over a finite domain: Math with wrap around



divisibility

Integers a, b, with $a \ne 0$. We say that a **divides** b iff there is an integer k such that b = k a. The notation a | b denotes "a divides b."

division theorem

Let a be an integer and d a positive integer. Then there are *unique* integers q and r, with $0 \le r < d$, such that a = d q + r.

$$q = a \operatorname{div} d \qquad r = a \operatorname{mod} d$$

$$a = 15 \qquad 3 \qquad \qquad = 3$$

$$d = 4 \qquad \qquad = 3$$

$$d = -13 \qquad \qquad = -4$$

$$d = 4 \qquad \qquad \qquad = 3$$
Note: $r \ge 0$ even if $a < 0$.
Not quite the same as $a \% d$.

arithmetic mod 7

-2 -1

$$a +_{7} b = (a + b) \mod 7$$

 $a \times_{7} b = (a \times b) \mod 7$

+	0	1	2	3	4	5	6
0	0	1	2	3	4	5	6
1	1	2	3	4	5	6	0
2	2	3	4	5	6	0	1
3	3	4	5	6	0	1	2
4	4	5	6	0	1	2	3
5	5	6	0	1	2	3	4
6	6	0	1	2	3	4	5

			_	_				
	Χ	0	1	2	3	4	5	6
	0	0	0	0	0	0	0	0
	1	0	1	2	3	4	5	6
	2	0	2	4	6	1	3	5
	3	0	3	6	2	5	1	4
	4 (0	4	1	5	2	6	3
-2	5	0	5	3	1	6	4	2
-\	6	0	6	5	4	3	2	1
'								

modular congruence

Let a and b be integers, and m be a positive integer. We say a is **congruent** to b **modulo** m if m divides a - b. We use the notation $a \equiv b \pmod{m}$ to indicate that a is congruent to b modulo m.

$$C_{k} = b \pmod{m}$$

$$C_{k} = b \pmod{m}$$

$$C_{k} = b \pmod{m}$$

modular arithmetic: examples

$A \equiv 0 \pmod{2}$

This statement is the same as saying "A is even"; so, any A that is even (including negative even numbers) will work.

$1 \equiv 0 \pmod{4}$

This statement is false. If we take it mod 1 instead, then the statement is true.

```
A \equiv -1 (mod 17)

If A = 17x - 1 = 17(x-1) + 16 for an integer x, then it works.

Note that (m - 1) mod m

= ((m mod m) + (-1 mod m)) mod m

= (0 + -1) mod m

= -1 mod m
```

modular arithmetic can haz sense

Theorem: Let a and b be integers, and let m be a positive integer. Then $a \equiv b \pmod{m}$ if and only if a mod m = b mod m.

```
Proof: Suppose that a ≡ b (mod m).
By definition: a ≡ b (mod m) implies m | (a − b)
which by definition implies that a − b = km for some integer k.
Therefore a = b + km.
Taking both sides modulo m we get
a mod m = (b+km) mod m = b mod m
```

modular arithmetic can haz sense

Theorem: Let a and b be integers, and let m be a positive integer. Then $a \equiv b \pmod{m}$ if and only if a mod $m = b \pmod{m}$.

```
Proof: Suppose that a mod m = b mod m.

By the division theorem, a = mq + (a \mod m) and b = ms + (b \mod m) for some integers q,s.

a - b = (mq + (a \mod m)) - (mr + (b \mod m))

= m(q - r) + (a \mod m - b \mod m)

= m(q - r) since a \mod m = b \mod m

Therefore m | (a-b) and so a \equiv b \pmod m
```

consistency of addition

Let m be a positive integer. If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $a + c \equiv b + d \pmod{m}$

Suppose $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$. Unrolling definitions gives us some k such that a - b = km, and some j such that c - d = jm.

Adding the equations together gives us (a + c) - (b + d) = m(k + j). Now, re-applying the definition of mod gives us $a + c \equiv b + d \pmod{m}$.

consistency of multiplication

Let m be a positive integer. If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $ac \equiv bd \pmod{m}$

```
Suppose a \equiv b \pmod{m} and c \equiv d \pmod{m}.
Unrolling definitions gives us some k such that a - b = km, and some j such that c - d = jm.
```

```
Then, a = km + b and c = jm + d.

Multiplying both together gives us

ac = (km + b)(jm + d) = kjm<sup>2</sup> + kmd + jmb + bd
```

Rearranging gives us ac – bd = m(kjm + kd + jb). Using the definition of mod gives us $ac = bd \pmod{m}$.

example

Let n be an integer.

Prove that $n^2 \equiv 0 \pmod{4}$ or $n^2 \equiv 1 \pmod{4}$