empty set and power set

Power set of a set *A* = set of all subsets of *A*

$$\mathcal{P}(A) = \{ B : B \subseteq A \}$$

e.g. Days = {
$$M, W, F$$
}

$$\mathcal{P}(Days) = \{ \emptyset, \qquad A \in \{1, \dots, 10\} \\ \{M\}, \{W\}, \{F\}, \qquad A \in \{1, \dots, 10\} \\ \{M, W\}, \{W, F\}, \{M, F\}, \ B \in \mathcal{P}(A) \\ \{M, W, F\} \ \}$$
e.g. $\mathcal{P}(\emptyset) = \{\emptyset\}$

$$\mathcal{P}(\emptyset) = \{\emptyset\}$$

Fall 2015 Lecture 10: Functions, Modular arithmetic [this special lecture was given by a 5-year-old]

So far:

- Propositional logic
- Logic to build circuits
- Predicates and quantifiers
- Proof systems and logical inference
- Basic set theory

empty domains

Question: If the domain of discourse is empty and *P* is a predicate, what is the truth value of:

 $\exists x P(x) \downarrow$ $\forall x P(x) \quad \mathcal{T}$

$\frac{(\alpha_{3}, b_{1})}{(\alpha_{3}, b_{2})} \qquad \text{functions}$

A **function** from *A* to *B*:

- Every element of *A* is assigned to exactly one element of *B*.
- We write $f : A \rightarrow B$.
- "Image of X under f'' = "f(X)" $= \{x : \exists y (y \in X \land x = f(y))\}$ $= \{x : \exists y (y \in X \land x = f(y))\}$ $\downarrow (\{\alpha_1, \alpha_2, \}) = \{b, b, c\}$ $\downarrow (\{\alpha_1, \alpha_3, b\}) = \{b, c\}$
- Codomain of f is B $\mathcal{F}(\mathcal{C}^{(1)},\mathcal{S}^{(2)})$
- Image of f = Image of domain under $f = \int (A)$
 - = all the elements pointed to by something in the domain.

image

A function $f : A \to B$ is one-to-one (or, injective) if every output corresponds to at most one input, i.e. $f(x) = f(x') \Rightarrow x = x'$ for all $x, x' \in A$.

A function $f : A \to B$ is onto (or, surjective) if every output gets hit, i.e. for every $y \in B$, there exists $x \in A$ such that f(x) = y.

is this function one-to-one? is it onto?

It is one-to-one, because nothing in Brisopointed to by multiple elements of A.

It is not onto, because 5 is not pointed to by anything.

QUIZ!

a harder quiz

Dear HBO, this is a slide about digital watermarking.

• How whole numbers work

[fascinating, deep, weird area of mathematics that no one understands, but the basics are easy and really useful]

- Many significant applications
 - Cryptography [this is how SSL works]
 - Hashing
 - Security
 - Error-correcting codes [this is how your bluray player works]
- Important tool set

thanks, java

```
public class Test {
   final static int SEC IN YEAR = 364*24*60*60;
   public static void main(String args[]) {
       System.out.println(
           "I will be alive for at least " +
           SEC IN YEAR * 101 + " seconds."
      );
          ----jGRASP exec: java Test
         I will be alive for at least -186619904 seconds.
----jGRASP: operation complete.
```

Arithmetic over a finite domain: Math with wrap around

Integers a, b, with a \neq 0. We say that a **divides** b iff there is an integer k such that b = k a. The notation a | b denotes "a divides b."

•

Let *a* be an integer and *d* a positive integer. Then there are *unique* integers *q* and *r*, with $0 \le r < d$, such that a = d q + r.

arithmetic mod 7

$$a +_7 b = (a + b) \mod 7$$

 $a \times_7 b = (a \times b) \mod 7$

$$5x_{7}5 = 4$$

25 mod 7=4

+	0	1	2	3	4	5	6
0	0	1	2	3	4	5	6
1	1	2	3	4	5	6	0
2	2	3	4	5	6	0	1
3	3	4	5	6	0	1	2
4	4	5	6	0	1	2	3
5	5	6	0	1	2	3	4
6	6	0	1	2	3	4	5

Х	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	0	6	5	4	3	2	1

Let a and b be integers, and m be a positive integer. We say *a* is **congruent** to *b* **modulo** *m* if *m* divides a - b. We use the notation $a \equiv b \pmod{m}$ to indicate that a is congruent to b modulo m.

 $10 \equiv 2 \mod 7$ $10 \equiv 3 \mod 7$ $10 \equiv -4 \mod 7$ $12 \equiv 20 \mod 8$

$A \equiv 0 \pmod{2}$

This statement is the same as saying "A is even"; so, any A that is even (including negative even numbers) will work.

$1 \equiv 0 \pmod{4}$

This statement is false. If we take it mod 1 instead, then the statement is true.

A ≡ -1 (mod 17)

If A = 17x - 1 = 17(x-1) + 16 for an integer x, then it works. Note that (m - 1) mod m

 $= ((m \mod m) + (-1 \mod m)) \mod m$

- $= (0 + -1) \mod m$
- = -1 mod m

Proof: Suppose that a ≡ b (mod m). By definition: a ≡ b (mod m) implies m | (a − b) which by definition implies that a − b = km for some integer k. Therefore a = b + km. Taking both sides modulo m we get a mod m = (b+km) mod m = b mod m

Proof: Suppose that a mod m = b mod m. By the division theorem, $a = mq + (a \mod m)$ and $b = ms + (b \mod m)$ for some integers q,s. $a - b = (mq + (a \mod m)) - (mr + (b \mod m)))$ $= m(q - r) + (a \mod m - b \mod m)$ $= m(q - r) \text{ since } a \mod m = b \mod m$ Therefore m | (a-b) and so $a \equiv b \pmod{m}$ Let m be a positive integer. If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $a + c \equiv b + d \pmod{m}$

Suppose $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$. Unrolling definitions gives us some k such that a - b = km, and some j such that c - d = jm.

Adding the equations together gives us (a + c) - (b + d) = m(k + j). Now, re-applying the definition of mod gives us $a + c \equiv b + d \pmod{m}$. Let m be a positive integer. If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then **ac \equiv bd (mod m)**

```
Suppose a \equiv b \pmod{m} and c \equiv d \pmod{m}.
Unrolling definitions gives us some k such that
a - b = km, and some j such that c - d = jm.
```

```
Then, a = km + b and c = jm + d.
Multiplying both together gives us
ac = (km + b)(jm + d) = kjm<sup>2</sup> + kmd + jmb + bd
```

Rearranging gives us ac - bd = m(kjm + kd + jb). Using the definition of mod gives us $ac \equiv bd \pmod{m}$.

Let *n* be an integer. Prove that $n^2 \equiv 0 \pmod{4}$ or $n^2 \equiv 1 \pmod{4}$