Fall 2015 Lecture 8: More Proofs

MY MATH TEACHER WAS A BIG BELIEVER IN PROOF BY INTIMIDATION.

- Start with hypotheses and facts
- Use rules of inference to extend set of facts
- Result is proved when it is included in the set

"Let a be anything"P(a)	∃x P(x)
∴ ∀x P(x)	∴ P(c) for some special** c
* in the domain of P	** By special, we mean that c is a name for a value where P(c) is true. We can't use anything else about that value, so c has to be a NEW variable!

"There exists an even prime number."

First, we translate into predicate logic: $\exists x (Even(x) \land Prime(x))$

- 1. Even(2)Fact (math)
- 2. Prime(2)
- 3. Even(2) ∧ Prime(2)

- Fact (math)
- Intro <a>: 1, 2
- 4. $\exists x (Even(x) \land Prime(x))$ Intro $\exists : 3$

Prove: "The square of every even number is even." Formal proof of: $\forall x (Even(x) \rightarrow Even(x^2))$

Even(x)
$$\equiv \exists y (x=2y)$$

Odd(x) $\equiv \exists y (x=2y+1)$
Domain: Integers

Prove: "The square of every even number is even." Formal proof of: $\forall x (Even(x) \rightarrow Even(x^2))$

- 1. Even(a) Assumption: a arbitrary integer 2. ∃y (a = 2y) Definition of Even 3. a = 2c By elim \exists : **c** special depends on a 4. $a^2 = 4c^2 = 2(2c^2)$ Algebra 5. $\exists y (a^2 = 2y)$ By intro \exists rule 6. Even(a²) **Definition of Even**
- 7. Even(a) \rightarrow Even(a²)
- Direct proof rule 8. $\forall x (Even(x) \rightarrow Even(x^2))$ By intro \forall rule
 - $Even(x) \equiv \exists y (x=2y)$ $Odd(x) \equiv \exists y (x=2y+1)$ **Domain: Integers**

Prove: "The square of every odd number is odd" English proof of: $\forall x (Odd(x) \rightarrow Odd(x^2))$

Let x be an odd number.

Then x = 2k + 1 for some integer k (depending on x) Therefore $x^2 = (2k+1)^2 = 4k^2 + 4k + 1 = 2(2k^2+2k) + 1$. Since $2k^2 + 2k$ is an integer, x^2 is odd.

Even(x)
$$\equiv \exists y (x=2y)$$

Odd(x) $\equiv \exists y (x=2y+1)$
Domain: Integers

To *disprove* $\forall x P(x)$ find a counterexample:

- some c such that $\neg P(c)$
- works because this implies $\exists x \neg P(x)$ which is equivalent to $\neg \forall x P(x)$

proof by contrapositive: another strategy for implications

If we assume $\neg q$ and derive $\neg p$, then we have proven $\neg q \rightarrow \neg p$, which is the same as $p \rightarrow q$.

proof by contradiction: one way to prove $\neg p$

If we assume p and derive False (a contradiction), then we have proved $\neg p$.

1. p	assumption
3. F	
4. $p \rightarrow F$	direct Proof rule
5. ¬p ∨ F	equivalence from 4
6. <mark>¬p</mark>	equivalence from 5

Prove: "No integer is both even and odd." English proof of: $\neg \exists x (Even(x) \land Odd(x))$ $\equiv \forall x \neg (Even(x) \land Odd(x))$

We proceed by contradiction:

Let x be any integer and suppose that it is both even and odd. Then x=2k for some integer k and x=2m+1 for some integer m. Therefore 2k=2m+1 and hence $k=m+\frac{1}{2}$.

But two integers cannot differ by $\frac{1}{2}$ so this is a contradiction. So, no integer is both even an odd.

> Even(x) $\equiv \exists y (x=2y)$ Odd(x) $\equiv \exists y (x=2y+1)$ Domain: Integers

 A real number x is *rational* iff there exist integers p and q with q ≠ 0 such that x=p/q.

Rational(x) = $\exists p \exists q ((x=p/q) \land Integer(p) \land Integer(q) \land q \neq 0)$

• Prove: If x and y are rational then xy is rational $\forall x \forall y ((Rational(x) \land Rational(y)) \rightarrow Rational(xy))$

rational numbers

Rational(x) = $\exists p \exists q ((x=p/q) \land Integer(p) \land Integer(q) \land q \neq 0)$ Prove: $\forall x \forall y ((Rational(x) \land Rational(y)) \rightarrow Rational(xy))$

Domain: Real numbers

rational numbers

Rational(x) = $\exists p \exists q ((x=p/q) \land Integer(p) \land Integer(q) \land q \neq 0)$ Prove: $\forall x \forall y ((Rational(x) \land Rational(y)) \rightarrow Rational(xy))$

Domain: Real numbers

 A real number x is *rational* iff there exist integers p and q with q ≠ 0 such that x=p/q.

Rational(x) = $\exists p \exists q ((x=p/q) \land Integer(p) \land Integer(q) \land q \neq 0)$

You might try to prove:

- If x and y are rational then x+y is rational
- If x and y are rational (and $y \neq 0$) then x/y is rational

proof by contradiction

Prove that $\sqrt{2}$ is irrational.

- Formal proofs follow simple well-defined rules and should be easy to check
 - In the same way that code should be easy to execute
- English proofs correspond to those rules but are designed to be easier for humans to read
 - Easily checkable in principle
- Simple proof strategies already do a lot
 - Later we will cover a specific strategy that applies to loops and recursion (mathematical induction)

one more proof

Theorem: There exist two positive irrational numbers x and y such that x^{y} is rational.

 $\pi^{\sqrt{2}}$? e^{π^2} ? φ^{φ} ?