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an inference rule:  Modus Ponens

• If p and p  q are both true then q must be true

• Write this rule as

• Given: 

– If it is Monday then you have a 311 class today. 

– It is Monday.

• Therefore,  by modus ponens:  

– You have a 311 class today.

p, p  q
∴ q



proofs

Show that r follows from p, p  q, and q  r

1.  p given
2. p  q     given
3. q r given
4. q  modus ponens from 1 and 2
5. r modus ponens from 3 and 4



inference rules

• Each inference rule is written as:

...which means that if both A and B

are true then you can infer C and

you can infer D.
– For rule to be correct  (A  B)  C  and 

(A  B)  D  must be a tautologies

• Sometimes rules don’t need anything to start with.  These rules 
are called axioms:
– e.g. Excluded Middle Axiom

A, B  
∴ C,D

∴ p p 



proofs can use equivalences too

Show that p follows from p  q and q

1. p  q             given
2.  q                 given
3.  q p    contrapositive of 1
4.  p                 modus ponens from 2 and 3



important: applications of inference rules

• You can use equivalences to make substitutions

of any sub-formula.

• Inference rules only can be applied to whole formulas

(not correct otherwise)

e.g.  1.  p  q given

2.  (p  r)  q        intro  from 1.

Does not follow!  e.g . p=F, q=F, r=T



simple propositional inference rules

Excluded middle plus two inference rules per binary connective, one to 
eliminate it and one to introduce it:

p  q
∴ p, q

p, q   
∴ p  q 

p            x
∴ p  q, q  p

p  q , p
∴ q

p, p  q
∴ q

p  q  
∴ p  q

Direct Proof Rule
Not like other rules



direct proof of an implication

• p  q denotes a proof of q given p as an assumption

• The direct proof rule:

If you have such a proof then you can conclude        

that p  q is true

Example:

1.   p assumption
2.   p  q      intro for  from 1                             

3.   p  (p  q)     direct proof rule

proof subroutine



proofs using the direct proof rule

Show that p  r follows from q and (p  q)  r

1.     q given

2. (p  q)  r     given

3.   p assumption

4.   p  q from 1 and 3 via Intro  rule    

5.   r modus ponens from 2 and 4

6.     p  r              direct proof rule



example

Prove:  (p  q)  (p  q)



example

Prove:    ((p  q)  (q  r))  (p  r)



one general proof strategy

1. Look at the rules for introducing connectives to see how you 
would build up the formula you want to prove from pieces of 
what is given

2. Use the rules for eliminating connectives to break down the 
given formulas so that you get the pieces you need to do (1).

3. Write the proof beginning with what you figured out for (2) 
followed by (1).



inference rules for quantifiers

∴ x P(x)

x P(x)        

∴ x P(x)

x P(x)               

* in the domain of P 

P(c) for some c

∴ P(a) for any a

“Let a be anything*”...P(a)

∴ P(c) for some special** c

** By special, we mean that c is a name for 
a value where P(c) is true. We can’t use 
anything else about that value, so c has to 
be a NEW variable!



proofs using quantifiers

“There exists an even prime number.”

Prime(x): x is an integer > 1 and x is not a multiple of any integer strictly 
between 1 and x 



proofs using quantifiers

1.  Even(2) Fact* (math)

2. Prime(2) Fact* (math)

3. Even(2)  Prime(2) Intro : 1, 2

4. x (Even(x)  Prime(x))   Intro : 3

Those first two lines are sort of cheating; we should prove those “facts”.

Prime(x): x is an integer > 1 and x is not a multiple of any integer strictly
between 1 and x 

Even(x)  y (x=2y)     

1. 2 = 2*1 Definition of Multiplication

2. Even(2) Intro : 1

3. There are no integers between 1 and 2 Definition of Integers

4. 2 is an integer Definition of 2

5. Prime(2) Intro : 3, 4



proofs using quantifiers

1. 2 = 2*1 Definition of Multiplication

2. Even(2) Intro : 1

3. There are no integers between 1 and 2 Definition of Integers

4. 2 is an integer Definition of 2

5. Prime(2) Intro : 3, 4

6. Even(2)  Prime(2) Intro : 2, 5

7. x (Even(x)  Prime(x))   Intro : 7

English version:

“Note that 2 = 2*1 by definition of multiplication.  It follows that there is a y 
such that  2 = 2y;  so, 2 is even.  Furthermore, 2 is an integer, and there are no 
integers between 1 and 2; so, by definition of a prime number, 2 is prime.    
Since 2 is both even and prime,  x (Even(x)  Prime(x)).”

Prime(x): x is an integer > 1 and x is not a multiple of any integer strictly
between 1 and x 

Even(x)  y (x=2y)     



even and odd

Prove: “The square of every even number is even.”

Formal proof of: x (Even(x)  Even(x2))

Even(x)  y  (x=2y)     
Odd(x)  y  (x=2y+1)
Domain: Integers 



even and odd

Prove: “The square of every even number is even.”

Formal proof of: x (Even(x)  Even(x2))

Even(x)  y  (x=2y)     
Odd(x)  y  (x=2y+1)
Domain: Integers 

1. Even(a) Assumption: a arbitrary integer
2. ∃y (a = 2y) Definition of Even
3. a = 2c By elim  : c special depends on a
4. a2 = 4c2 = 2(2c2)  Algebra
5. ∃y (a2 = 2y) By  intro  rule
6. Even(a2) Definition of Even

7.   Even(a)Even(a2) Direct proof rule
8.   x (Even(x)Even(x2)) By intro  rule



even and odd

Prove: “The square of every odd number is odd.”

English proof of: x (Odd(x)Odd(x2))

Even(x)  y  (x=2y)     
Odd(x)  y  (x=2y+1)
Domain: Integers 



even and odd

Prove: “The square of every odd number is odd.”

English proof of: x (Odd(x)Odd(x2))

Even(x)  y  (x=2y)     
Odd(x)  y  (x=2y+1)
Domain: Integers 

Let x be an odd number.
Then x = 2k + 1 for some integer k (depending on x)
Therefore x2 = (2k+1)2 = 4k2 + 4k + 1 = 2(2k2+2k) + 1.
Since 2k2 + 2k is an integer, x2 is odd.                        



proof by contradiction:  one way to prove p

If we assume p and derive False (a contradiction), then we 
have proved p.

1.  p         assumption

...

3.  F

4.   p  F direct Proof rule

5.   p  F       equivalence from 4

6.   p equivalence from 5


