
cse 311: foundations of computing 

Fall 2015 
Lecture 7:  Proofs 



an inference rule:  Modus Ponens 

• If p and p  q are both true then q must be true 
 

• Write this rule as 
 

• Given:  
– If it is Monday then you have a 311 class today.  
– It is Monday. 

 
• Therefore,  by modus ponens:   

– You have a 311 class today. 

p, p  q 
∴  q 



proofs 

Show that r follows from p, p  q, and q  r 
 

  
1.    p              given 
2.   p  q      given 
3.   q  r   given 
4.   q             modus ponens from 1 and 2 
5.   r              modus ponens from 3 and 4 



inference rules 

• Each inference rule is written as: 

    ...which means that if both A and B 
     are true then you can infer C and 
     you can infer D. 

– For rule to be correct  (A  B)  C  and  
    (A  B)  D  must be a tautologies 

 
• Sometimes rules don’t need anything to start with.  These 

rules are called axioms: 
– e.g. Excluded Middle Axiom  

   A, B   
∴ C,D 

                    
∴  p p  



proofs can use equivalences too 

Show that p follows from p  q and q 
 
1.   p  q             given 
2.    q                  given 
3.    q   p    contrapositive of 1 
4.    p                  modus ponens from 2 and 3 

 
 



important: applications of inference rules 

• You can use equivalences to make substitutions 
     of any sub-formula. 

 

• Inference rules only can be applied to whole formulas 
    (not correct otherwise) 

     e.g.  1.  p  q                  given 
             2.  (p  r)  q         intro  from 1. 
  

Does not follow!  e.g . p=F, q=F, r=T 



simple propositional inference rules 

Excluded middle plus two inference rules per binary connective, one to 
eliminate it and one to introduce it: 

  p  q  
∴ p, q 

   p, q    
∴ p  q  

            p            x    
∴ p  q, q  p 

 p  q , p 
∴ q 

p, p  q 
∴  q 

   p  q   
∴ p  q 

Direct Proof Rule 
Not like other rules 



direct proof of an implication 

• p  q denotes a proof of q given p as an assumption 
   

• The direct proof rule: 
  If you have such a proof then you can conclude         
  that p  q is true 

   

    Example:   
    1.   p               assumption                               
              2.   p  q         intro for  from 1                             
  3.   p  (p  q)      direct proof rule 

proof subroutine 



proofs using the direct proof rule 

Show that p  r follows from q and (p  q)  r 
 
1.     q                      given 
2.  (p  q)  r      given 
          3.   p              assumption 
         4.   p  q        from 1 and 3 via Intro  rule           

  5.   r               modus ponens from 2 and 4 
6.     p  r               direct proof rule 



example 

Prove:  (p  q)  (p  q) 
 
 

 
 



example 

Prove:    ((p  q)  (q  r))  (p  r) 
 
 

 
 



one general proof strategy 

1. Look at the rules for introducing connectives to see how 
you would build up the formula you want to prove from 
pieces of what is given 

 
2. Use the rules for eliminating connectives to break down 

the given formulas so that you get the pieces you need to 
do (1). 

 
3. Write the proof beginning with what you figured out for (2) 

followed by (1). 



inference rules for quantifiers 

∴ x P(x) 

       x P(x)         

∴ x P(x) 

         x P(x)                

* in the domain of P  

   P(c) for some c 

∴ P(a) for any a 

 “Let a be anything*”...P(a) 

∴ P(c) for some special** c 

** By special, we mean that c is a name 
for a value where P(c) is true. We can’t 
use anything else about that value, so c 
has to be a NEW variable! 



proofs using quantifiers 

“There exists an even prime number.” 
 

 

 

 

Prime(x):  x is an integer > 1 and x is not a multiple of any integer 
strictly between 1 and x  



proofs using quantifiers 

1.      Even(2)                         Fact* (math) 
2. Prime(2)            Fact* (math) 
3. Even(2)  Prime(2)         Intro : 1, 2 
4. x  (Even(x)  Prime(x))    Intro : 3 
    
Those first two lines are sort of cheating; we should prove those “facts”. 

Prime(x):  x is an integer > 1 and x is not a multiple of any integer strictly 
  between 1 and x  
Even(x)  y (x=2y)      

1. 2 = 2*1             Definition of Multiplication 
2. Even(2)             Intro : 1 
3. There are no integers between 1 and 2  Definition of Integers 
4. 2 is an integer      Definition of 2 
5. Prime(2)        Intro : 3, 4 

 
 



proofs using quantifiers 

1.  2 = 2*1             Definition of Multiplication 
2.  Even(2)             Intro : 1 
3.  There are no integers between 1 and 2  Definition of Integers 
4.  2 is an integer      Definition of 2 
5.  Prime(2)        Intro : 3, 4 
6.  Even(2)  Prime(2)           Intro : 2, 5 
7. x (Even(x)  Prime(x))       Intro : 7 

 
 
 

English version: 
“Note that 2 = 2*1 by definition of multiplication.  It follows that there is a 
y such that  2 = 2y;  so, 2 is even.  Furthermore, 2 is an integer, and there 
are no integers between 1 and 2; so, by definition of a prime number, 2 is 
prime.    Since 2 is both even and prime,  x  (Even(x)  Prime(x)).” 

Prime(x):  x is an integer > 1 and x is not a multiple of any integer strictly 
  between 1 and x  
Even(x)  y (x=2y)      



even and odd 

Prove: “The square of every even number is even.” 
   Formal proof of:  x (Even(x)  Even(x2)) 

 

 

Even(x)  y  (x=2y)      
Odd(x)   y  (x=2y+1) 
Domain: Integers  



even and odd 

Prove: “The square of every even number is even.” 
      Formal proof of:  x (Even(x)  Even(x2)) 

 

 

Even(x)  y  (x=2y)      
Odd(x)   y  (x=2y+1) 
Domain: Integers  

1. Even(a)                  Assumption: a arbitrary integer 
2. ∃y (a = 2y)           Definition of Even 
3. a = 2c            By elim  : c special depends on a 
4. a2 = 4c2 = 2(2c2)   Algebra 
5. ∃y (a2 = 2y)           By  intro  rule 
6. Even(a2)            Definition of Even 

7.   Even(a)Even(a2)    Direct proof rule 
8.   x (Even(x)Even(x2)) By intro  rule 



even and odd 

Prove: “The square of every odd number is odd.” 
   English proof of:   x (Odd(x)Odd(x2)) 
 

    

Even(x)  y  (x=2y)      
Odd(x)   y  (x=2y+1) 
Domain: Integers  



even and odd 

Prove: “The square of every odd number is odd.” 
   English proof of:   x (Odd(x)Odd(x2)) 
 

    

Even(x)  y  (x=2y)      
Odd(x)   y  (x=2y+1) 
Domain: Integers  

Let x be an odd number. 
   Then x = 2k + 1 for some integer k (depending on x) 
   Therefore x2 = (2k+1)2 = 4k2 + 4k + 1 = 2(2k2+2k) + 1. 
   Since 2k2 + 2k is an integer, x2 is odd.                          
 



proof by contradiction:  one way to prove p 

If we assume p and derive False (a contradiction), then we 
have proved p. 
 
                         1.  p         assumption 
                          ... 
                         3.  F 
          4.   p  F           direct Proof rule 
          5.   p  F         equivalence from 4 
          6.   p                equivalence from 5 
                           


