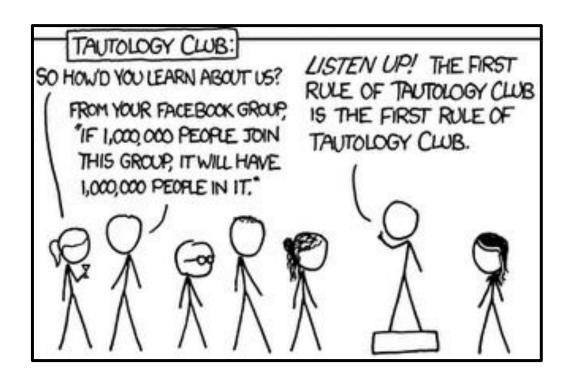
cse 311: foundations of computing

Fall 2015

Lecture 7: Proofs



an inference rule: *Modus Ponens*

• If p and p \rightarrow q are both true then q must be true

- Given:
 - If it is Monday then you have a 311 class today.
 - It is Monday.
- Therefore, by modus ponens:
 - You have a 311 class today.

Show that r follows from p, p \rightarrow q, and q \rightarrow r

```
    p given
    p → q given
    q → r given
    q modus ponens from 1 and 2 modus ponens from 3 and 4
```

...which means that if both A and B are true then you can infer C and you can infer D.

- For rule to be correct $(A \land B) \rightarrow C$ and $(A \land B) \rightarrow D$ must be a tautologies
- Sometimes rules don't need anything to start with. These rules are called axioms:
 - e.g. Excluded Middle Axiom

proofs can use equivalences too

Show that $\neg p$ follows from $p \rightarrow q$ and $\neg q$

```
1. p \rightarrow q given
```

- 2. <mark>→ q</mark> given
- 3. $\neg q \rightarrow \neg p$ contrapositive of 1
- 4. -p modus ponens from 2 and 3

important: applications of inference rules

- You can use equivalences to make substitutions of any sub-formula.
- Inference rules only can be applied to whole formulas (not correct otherwise)

e.g. 1.
$$p \rightarrow q$$
 given
2. $(p \lor r) \rightarrow q$ intro \lor from 1.

Does not follow! e.g. p=F, q=F, r=T

simple propositional inference rules

Excluded middle plus two inference rules per binary connective, one to eliminate it and one to introduce it:

direct proof of an implication

- $p \Rightarrow q$ denotes a proof of q given p as an assumption
- The direct proof rule:

If you have such a proof then you can conclude that $p \rightarrow q$ is true

Example:

proof subroutine

1. p assumption
2.
$$p \lor q$$
 intro for \lor from 1
3. $p \to (p \lor q)$ direct proof rule

proofs using the direct proof rule Show that $p \rightarrow r$ follows from q and $(p \land q) \rightarrow r$

1. q given 2. $(p \land q) \rightarrow r$ given 3. p assumption 4. $p \land q$ from 1 and 3 via Intro \land rule modus ponens from 2 and 4 6. $p \rightarrow r$ direct proof rule

```
Prove: (p \land q) \rightarrow (p \lor q)
```

```
Prove: ((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)

\begin{pmatrix}
1. & (P \rightarrow q) \land (q \rightarrow r) \\
2. & P \rightarrow q & \text{elim} \land \text{in} \end{cases}

3. & q \rightarrow r & \text{elim} \land \text{in} \end{cases}

J. P. P.

from 2,4 moder ponen

l 6. r from 3,5 moder ponen

7. P. r
     Q. ((p→9) N (9→r))→ (p→r).
```

one general proof strategy

- Look at the rules for introducing connectives to see how you would build up the formula you want to prove from pieces of what is given
- 2. Use the rules for eliminating connectives to break down the given formulas so that you get the pieces you need to do (1).
- 3. Write the proof beginning with what you figured out for (2) followed by (1).

inference rules for quantifiers

P(c) for some c

 $\forall x P(x)$

 $\therefore \exists x P(x)$

 \therefore P(a) for any a

"Let a be anything*"...P(a)

 $\exists x P(x)$

 $\therefore \forall x P(x)$

 \therefore P(c) for some *special*** c

* in the domain of P

** By special, we mean that c is a name for a value where P(c) is true. We can't use anything else about that value, so c has to be a NEW variable!

proofs using quantifiers

"There exists an even prime number."

Jx (even (x)
$$\Lambda$$
 prime (x)]

1. Even (2) Math fact

2. Prime (2) ~ ~

3. Even(2) Λ Prim(2) intro Λ

4. Jx even(x) Λ Prime (x)

Jhhe

Prime(x): x is an integer > 1 and x is not a multiple of any integer strictly between 1 and x

proofs using quantifiers

1. Even(2) Fact* (math)

2. Prime(2) Fact* (math)

3. Even(2) \land Prime(2) Intro \land : 1, 2

4. $\exists x (Even(x) \land Prime(x))$ Intro $\exists : 3$

Those first two lines are sort of cheating; we should prove those "facts".

1. 2 = 2*1 Definition of Multiplication

2. Even(2) Intro ∃: 1

3. There are no integers between 1 and 2 Definition of Integers

4. 2 is an integer Definition of 2

5. Prime(2) Intro ∧: 3, 4

Prime(x): x is an integer > 1 and x is not a multiple of any integer strictly between 1 and x

Even(x) $\equiv \exists y (x=2y)$

proofs using quantifiers

1. 2 = 2*1 Definition of Multiplication

2. Even(2) Intro \exists : 1

3. There are no integers between 1 and 2 Definition of Integers

4. 2 is an integer Definition of 2

5. Prime(2) Intro ∧: 3, 4

6. Even(2) ∧ Prime(2) Intro ∧: 2, 5

7. $\exists x (Even(x) \land Prime(x))$ Intro $\exists : 76$

English version:

"Note that 2 = 2*1 by definition of multiplication. It follows that there is a y such that 2 = 2y; so, 2 is even. Furthermore, 2 is an integer, and there are no integers between 1 and 2; so, by definition of a prime number, 2 is prime. Since 2 is both even and prime, $\exists x \ (Even(x) \land Prime(x))$."

Prime(x): x is an integer > 1 and x is not a multiple of any integer strictly between 1 and x

Even(x) $\equiv \exists y (x=2y)$

Prove: "The square of every even number is even."

Formal proof of: $\forall x \text{ (Even(x)} \rightarrow \text{Even(x}^2))$

```
7. Even (a)

2. 3y = 2y

3. a = 2b
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       Def of em
from 2, int ruh for 3
                         4. a² = 4b² = 2 (2b²) Algebra
                5. \exists y \quad \alpha^2 = 2y by \exists y \quad \exists y \quad
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    Domain: Integers
```

even and odd

Prove: "The square of every even number is even."

Formal proof of: $\forall x (Even(x) \rightarrow Even(x^2))$

```
1. Even(a) Assumption: a arbitrary integer
```

2.
$$\exists y (a = 2y)$$
 Definition of Even

3.
$$a = 2c$$
 By elim $\exists : c$ special depends on a

4.
$$a^2 = 4c^2 = 2(2c^2)$$
 Algebra

5.
$$\exists y (a^2 = 2y)$$
 By intro \exists rule

- 7. Even(a) \rightarrow Even(a²) Direct proof rule
- 8. $\forall x \text{ (Even(x)} \rightarrow \text{Even(x^2))} \text{ By intro } \forall \text{ rule}$

```
Even(x) \equiv \exists y \ (x=2y)
Odd(x) \equiv \exists y \ (x=2y+1)
Domain: Integers
```

even and odd

Prove: "The square of every odd number is odd."

English proof of: $\forall x (Odd(x) \rightarrow Odd(x^2))$

```
Even(x) \equiv \exists y \ (x=2y)
Odd(x) \equiv \exists y \ (x=2y+1)
Domain: Integers
```

even and odd

Prove: "The square of every odd number is odd."

English proof of: $\forall x (Odd(x) \rightarrow Odd(x^2))$

Let x be an odd number.

```
Then x = 2k + 1 for some integer k (depending on x)
Therefore x^2 = (2k+1)^2 = 4k^2 + 4k + 1 = 2(2k^2+2k) + 1.
Since 2k^2 + 2k is an integer, x^2 is odd.
```

Even(x) $\equiv \exists y \ (x=2y)$ Odd(x) $\equiv \exists y \ (x=2y+1)$ Domain: Integers

proof by contradiction: one way to prove ¬p

If we assume p and derive False (a contradiction), then we have proved $\neg p$.

- 1. p assumption
 - . . .
- 3. **F**
- 4. $p \rightarrow F$
- 5. $\neg p \vee F$
- 6. **¬p**

- direct Proof rule
- equivalence from 4
- equivalence from 5