
cse 311: foundations of computing

Fall 2015
Lecture 6:  Predicate Logic, Logical Inference



quantifiers

∀𝑥 𝑃(𝑥)

P(x) is true for every x in the domain
read as “for all x, P of x”

∃𝑥 𝑃 𝑥

There is an x in the domain for which P(x) is true
read as “there exists x, P of x”



negations of quantifiers

• not every positive integer is prime

• some positive integer is not prime

• prime numbers do not exist

• every positive integer is not prime



negations of quantifiers

x PurpleFruit(x)

Which one is equal to x PurpleFruit(x)?

• x PurpleFruit(x)?

• x PurpleFruit(x)?

Domain:
Fruit

PurpleFruit(x)



de Morgan’s laws for quantifiers

x  P(x)  x P(x)
x P(x)  x P(x)



de Morgan’s laws for quantifiers

  x  y ( x ≥ y)
  x  y  ( x ≥ y)
  x   y  ( x ≥ y)
  x   y    (y > x)

“There is no largest integer.”

“For every integer there is a larger integer.”

x  P(x)  x P(x)
x P(x)  x P(x)



scope of quantifiers

example:    Notlargest(x)     y Greater (y, x)                            
  z Greater (z, x)

truth value:
doesn’t depend on y or z “bound variables”
does depend on x “free variable”

quantifiers only act on free variables of the formula they quantify
 x ( y (P(x, y)  x Q(y, x)))



scope of quantifiers

example:
Domain = positive integers
IsMultiple 𝑥, 𝑦 = “𝑥 is a multiple of 𝑦”
∀𝑥 𝑥 > 1 ∧ ¬(𝑥 = 𝑦) → ¬IsMultiple 𝑦, 𝑥

≡ Prime(𝑦)

∀𝑥 ∃𝑦 𝑥 < 𝑦 ∧ ∀𝑥 𝑥 > 1 ∧ ¬ 𝑥 = 𝑦 → ¬IsMultiple 𝑦, 𝑥

∀𝑥 ∃𝑦 𝑥 < 𝑦 ∧ Prime(𝑦)



scope of quantifiers

example:
Domain = positive integers
IsMultiple 𝑥, 𝑦 = “𝑥 is a multiple of 𝑦”
∀𝑥 𝑥 > 1 ∧ ¬(𝑥 = 𝑦) → ¬IsMultiple 𝑦, 𝑥

≡ Prime(𝑦)

∀𝑥 ∃𝑦
𝑥 < 𝑦 ∧ ∀𝑥 𝑥 > 1 ∧ ¬ 𝑥 = 𝑦 → ¬IsMultiple 𝑦, 𝑥

∧ ∀𝑥 𝑥 > 1 ∧ ¬ 𝑥 = 𝑦 → ¬IsMultiple 𝑦, 𝑥

∀𝑥 ∃𝑦 𝑥 < 𝑦 ∧ Prime 𝑦 ∧ Prime 𝑦 + 2



scope of quantifiers

example:
Domain = positive integers
IsMultiple 𝑥, 𝑦 = “𝑥 is a multiple of 𝑦”
∀𝑥 𝑥 > 1 ∧ ¬(𝑥 = 𝑦) → ¬IsMultiple 𝑦, 𝑥

≡ Prime(𝑦)

∀𝑥 ∃𝑦
𝑥 < 𝑦 ∧ ∀𝑥 𝑥 > 1 ∧ ¬ 𝑥 = 𝑦 → ¬IsMultiple 𝑦, 𝑥

∧ ∀𝑥 𝑥 > 1 ∧ ¬ 𝑥 = 𝑦 → ¬IsMultiple 𝑦, 𝑥 ∧ (𝑥 < 𝑦2)

∀𝑥 ∃𝑦 𝑥 < 𝑦 ∧ Prime 𝑦 ∧ Prime 𝑦 + 2 ∧ 𝑥 < 𝑦2



scope of quantifiers

x  (P(x)  Q(x)) vs. x P(x)  x Q(x)



nested quantifiers

• Bound variable names don’t matter
 x  y P(x, y)   a  b P(a, b)

• Positions of quantifiers can sometimes change
 x (Q(x)   y P(x, y))   x  y (Q(x)  P(x, y))

• But:   order is important...



predicate with two variables

P(x, y)x

y



quantification with two variables

expression when true when false

x  y P(x, y)

 x  y P(x, y)

 x  y P(x, y)

 x  y P(x, y)



∀𝑥 ∀𝑦 𝑃(𝑥, 𝑦)

x

y



∃𝑥 ∃𝑦 𝑃(𝑥, 𝑦)

x

y



∀𝑥 ∃𝑦 𝑃(𝑥, 𝑦)

x

y



∃𝑥 ∀𝑦 𝑃(𝑥, 𝑦)

x

y



quantification with two variables

expression when true when false

x  y P(x, y)

 x  y P(x, y)

 x  y P(x, y)

 x  y P(x, y)



logal inference

• So far we’ve considered:
– How to understand and express things using 

propositional and predicate logic
– How to compute using Boolean (propositional) logic
– How to show that different ways of expressing or 

computing them are equivalent to each other

• Logic also has methods that let us infer implied 
properties from ones that we know
– Equivalence is only a small part of this



applications of logical inference

• Software Engineering
– Express desired properties of program as set of logical constraints
– Use inference rules to show that program implies that those 

constraints are satisfied

• Artificial Intelligence
– Automated reasoning 

• Algorithm design and analysis
– e.g.,  Correctness, Loop invariants.

• Logic Programming, e.g. Prolog
– Express desired outcome as set of constraints
– Automatically apply logic inference to derive solution

foundations of rational thought…



proofs

• Start with hypotheses and facts
• Use rules of inference to extend set of facts
• Result is proved when it is included in the set



an inference rule:  Modus Ponens

• If p and p  q are both true then q must be true

• Write this rule as

• Given: 
– If it is Monday then you have a 311 class today. 
– It is Monday.

• Therefore,  by modus ponens:  
– You have a 311 class today.

p, p  q
∴ q



proofs

Show that r follows from p, p  q, and q  r

1.  p given
2. p  q     given
3. q r given
4. q  modus ponens from 1 and 2
5. r modus ponens from 3 and 4



proofs can use equivalences too

Show that p follows from p  q and q

1. p  q              given
2.  q                 given
3.  q p     contrapositive of 1
4.  p                 modus ponens from 2 and 3



inference rules

• Each inference rule is written as:

...which means that if both A and B
are true then you can infer C and
you can infer D.
– For rule to be correct  (A  B)  C  and 

(A  B)  D  must be a tautologies

• Sometimes rules don’t need anything to start with.  These 
rules are called axioms:
– e.g. Excluded Middle Axiom

A, B  
∴ C,D

∴ p p 



simple propositional inference rules

Excluded middle plus two inference rules per binary connective, one to 
eliminate it and one to introduce it:

p  q
∴ p, q

p, q   
∴ p  q 

p            x
∴ p  q, q  p

p  q , p
∴ q

p, p  q
∴ q

p  q  
∴ p  q

Direct Proof Rule
Not like other rules



important: applications of inference rules

• You can use equivalences to make substitutions
of any sub-formula.

• Inference rules only can be applied to whole formulas
(not correct otherwise)

e.g.  1.  p  q given
2.  (p  r)  q        intro  from 1.

Does not follow!  e.g . p=F, q=F, r=T



direct proof of an implication

• p  q denotes a proof of q given p as an assumption

• The direct proof rule:
If you have such a proof then you can conclude        
that p  q is true

Example:
1.   p assumption
2.   p  q      intro for  from 1                             

3.   p  (p  q)     direct proof rule

proof subroutine


