cse 311: foundations of computing

Fall 2015
Lecture 6: Predicate Logic, Logical Inference

WOW. T CANT | | YOUVE SHOWN THE INCONSISTENCY= | peap DR, KNUTH, | I AM WRITING TO CoLLECT
FIND FAUTWITH | | AND THUS INVALIDITY — OF BASIC FROM YOU THE $3,372,564.4
YOUR PROOF: LOGIC ITSELF. T AM OWED FOR DISCOVERING
1,317,408 ERRORS IN 74 ART
: o QOIVIER FROGADING....

¢

quantifiers

Vx P(x)
P(x) is true for every x in the domain
read as “for all x, P of x"

Ix P(x)
There is an x in the domain for which P(x) is true
read as “there exists x, P of x"

negations of quantifiers

not every positive integer IS prime

some positive integer Is not prime

prime numbers do not exist

every positive integer Is not prime

negations of quantifiers

Vx PurpleFruit(x) Domain:

Fruit

PurpleFruit(x)

Which one is equal to —\Vx PurpleFruit(x)?

« 3x PurpleFruit(x)?

 3x —PurpleFruit(x)?

de Morgan’s laws for quantifiers

—Vx P(x) = Ix =P(x)
—dx P(x) = Vx —P(x)

de Morgan’s laws for quantifiers

—Vx P(x) = dx—=P(x)
—dx P(x) = Vx —P(x)

“There 1s no largest integer ’

—3X y (xzy)
= vXﬁVy (x2y)
= Vx 3dy-(xzy)
= Vx dy (y>x

“For every Integer there Is a larger integer.”

scope of quantifiers

example: Notlargest(x)

3y Greater (y, x)
3 z Greater (z, x)

truth value:

doesn't depend on y or z “bound variables”
does depend on x “free variable”

quantifiers only act on free variables of the formula they quantify
vx @3y (P y) — v xafy, x))

scope of quantifiers

example:
Domain = positive integers
[sMultiple(x, y) = “x is a multiple of y"
Vx ((x > 1 A=(x = y)) » —IsMultiple(y, x))
= Prime(y)

vx 3y ((x < y) APrime(y))

Vx 3y ((x <y)A (Vx ((x >1AA(x = y)) — —IsMultiple(y, x))))

scope of quantifiers

example:
Domain = positive integers
[sMultiple(x, y) = “x is a multiple of y"
Vx ((x > 1 A=(x = y)) » —IsMultiple(y, x))
= Prime(y)

vx 3y ((x < y) A Prime(y) A Prime(y + 2))

<(x <y)A (‘v’x ((x >1Aa(x = y)) — —IsMultiple(y, x))))
Vx 3y

A (Vx ((x >1A=a(x = y)) — —IsMultiple(y, x)))

scope of quantifiers

example:
Domain = positive integers
[sMultiple(x, y) = “x is a multiple of y"
Vx ((x > 1 A=(x = y)) » —IsMultiple(y, x))
= Prime(y)

Vx 3y ((x < y) A Prime(y) A Prime(y + 2) A (x < yz))

x<y)A (Vx ((x >1A=(x = y)) — —IsMultiple(y, x)))
i A (Vx ((x >1AA(x =)’)) — —IsMultiple(y, x))) A(x <y?)

scope of quantifiers

Ix (PX) AQ(x)) vs. 3IxP(x) A3IxQ(x)

nested quantifiers

* Bound variable names don't matter
vV x3yP(x,y)=V a3bP(ab)

« Positions of quantifiers can sometimes change
v x(Q(x) A3y P(x,y)) =V x3y (Qx) A P(x, y))

« But: orderis important...

predicate with two variables

quantification with two variables

expression when true when false

Vx V yP(x,y)

Ix3yP(xy)

VvV x3yP(x,y)

IxVyP(xy)

Vx Vy P(x,y)

dx Ay P(x,y)

Vx 3y P(x,y)

dx Vy P(x,y)

quantification with two variables

expression when true when false

Vx V yP(x,y)

Ix3yP(xy)

VvV x3yP(x,y)

IxVyP(xy)

logal inference

e So far we've considered:

— How to understand and express things using
oropositional and predicate logic

— How to compute using Boolean (propositional) logic

— How to show that different ways of expressing or
computing them are equivalent to each other

* Logic also has methods that let us infer implied
properties from ones that we know

— Equivalence is only a small part of this

applications of logical inference

Software Engineering
— Express desired properties of program as set of logical constraints

— Use inference rules to show that program implies that those
constraints are satisfied

Artificial Intelligence
— Automated reasoning

Algorithm design and analysis
— e.g., Correctness, Loop invariants.

MAKING HER DEBUT AS FOX NEWS ANALYST

[SARAHPAUN o)

: : foundations of rational thought...
Logic Programming, e.g. Prolog

— Express desired outcome as set of constraints
— Automatically apply logic inference to derive solution

proofs

« Start with hypotheses and facts
 Use rules of inference to extend set of facts
 Result is proved when it 1s Included In the set

an inference rule: Modus Ponens

If p and p — q are both true then g must be true

Write this rule as P.P—>0Q
" q
Given:
— If it is Monday then you have a 311 class today.
— It 1s Monday.

Therefore, by modus ponens:
— You have a 311 class today.

proofs

Show that r follows fromp,p —>q,andq —r

P given
p—q given
q—r given
q modus ponens from 1 and 2
r modus ponens from 3 and 4

onhAE W~

proofs can use equivalences too

Show that —p follows from p — g and —q

1 P—(given

2 — given

3 —q—>—=p contrapositive of 1

4 —p modus ponens from 2 and 3

inference rules

A, B
~C,D

e Each inference rule is written as:

...which means that if both A and B
are true then you can infer C and
you can infer D.

— For rule to be correct (A AB) — C and
(A A B) — D must be a tautologies

« Sometimes rules don't need anything to start with. These
rules are called axioms:

— e.g. Excluded Middle Axiom

simple propositional inference rules

Excluded middle plus two inference rules per binary connective, one to
eliminate it and one to introduce it:

PA(Q P, g

- P, g P AQ
pvVvg,—p P

e ~pvqg,qvp

P.P—¢
" Q

Direct Proof Rule
Not like other rules

important: applications of inference rules

* You can use equivalences to make substitutions
of any sub-formula.

« Inference rules only can be applied to whole formulas
(not correct otherwise)

e.g. p—0a_ given —
2—p~vT—q introv fromi—

Does not follow! e.g. p=F, q=F, r=T

direct proof of an implication

* p = q denotes a proof of g given p as an assumption

 The direct proof rule:
If you have such a proof then you can conclude
that p — qis true

Example: proof subroutine
1. p assumption
2. pvqQ intro for v from 1

3. p—>(pvq) direct proof rule

