cse 311: foundations of computing

Fall 2015
 Lecture 6: Predicate Logic, Logical Inference

WOW. I CAN'T FIND FAULT WITH YOUR PRDOF.	YOU'VE SHOWN THE INCONSISTENCYAND THUS INNALIDITY-OF BASKC LOGIC ITSELF.	DEAR DR. KNUTH,	I AM WRITNG TO CQLECT FROM YOU THE \$3,372,564.48 I AM OWED FOR DISCOVERING
			1,317,408 ERRORS IN THEART of COMPITER PROGRAMMING...

$\forall x P(x)$
$\mathrm{P}(\mathrm{x})$ is true for every x in the domain read as "for all x, P of x "
$\exists x P(x)$
There is an x in the domain for which $\mathrm{P}(\mathrm{x})$ is true read as "there exists x, P of x "
not every positive integer is prime

$$
\neg \forall x \operatorname{Prime}^{\prime}(x) \equiv \exists x \neg P_{\text {Pine }}(x)
$$

some positive integer is not prime

$$
\exists x \neg \operatorname{Prime}(x)
$$

- prime numbers do not exist

$$
\forall x \neg \operatorname{Prime}(x) \equiv \neg \exists_{x} \operatorname{Prime}(x)
$$

every positive integer is not prime

$$
\forall x \neg \operatorname{Prime}(x)
$$

negations of quantifiers

$\forall x$ PurpleFruit(x)

Domain:
Fruit

PurpleFruit(x)
Which one is equal to $\neg \forall x$ PurpleFruit (x) ?

- $\exists x$ PurpleFruit(x)?

- $\exists \mathrm{x} \neg$ PurpleFruit (x) ?

$$
\begin{aligned}
& \text { de Morgan's laws for quantifiers }
\end{aligned}
$$

$$
\begin{aligned}
& D=\left\{x_{1}, x_{2}, x_{3}, \ldots\right\} \\
& \forall x P(x) \equiv P\left(x_{1}\right) \wedge P\left(x_{2}\right) \wedge P\left(x_{3}\right) \wedge \cdots \\
& \exists x P(x) \equiv P\left(x_{1}\right) \vee P\left(v_{2}\right) \vee P\left(x_{3}\right) \vee \cdots \\
& \neg \forall x P(x) \equiv \neg\left(P\left(x_{1}\right) \wedge P\left(x_{2}\right) \sim \cdots\right) \\
& \equiv \neg P\left(x_{1}\right) \vee \neg P\left(x_{2}\right) \vee \cdots \\
& \equiv \exists x \neg P(x)
\end{aligned}
$$

de Morgan's laws for quantifiers

$$
\begin{array}{rl}
\neg \forall \mathrm{x} & \mathrm{P}(\mathrm{x})
\end{array} \equiv \exists \mathrm{x} \neg \mathrm{P}(\mathrm{x}),
$$

"There is no largest integer."

$$
\begin{aligned}
& \neg \exists \mathrm{x} \quad \forall \mathrm{y} \quad(\mathrm{x} \geq \mathrm{y}) \\
& \equiv \forall x \neg \forall y \quad(x \geq y) \\
& \equiv \forall x \quad \exists y \neg(x \geq y) \\
& \equiv \begin{array}{lll}
\forall x & \exists y & (y>x)
\end{array}
\end{aligned}
$$

"For every integer there is a larger integer."

scope of quantifiers

$$
\forall x 7 y(y \geq x)
$$

example: $\operatorname{Notlargest(x)~} \equiv \exists \mathrm{y}$ Greater (y, x)
$\equiv \exists \mathrm{z}$ Greater (z, x)
truth value:
doesn't depend on y or z "bound variables" does depend on x "free variable"
quantifiers only act on free variables of the formula they quantify

$$
\begin{aligned}
& \forall x(\exists y(P(x, y) \rightarrow \forall x Q(y, x))) \\
& \quad \equiv \forall x(\exists y P(x, y) \rightarrow \forall z Q(y, z))
\end{aligned}
$$

scope of quantifiers

example:

Domain = positive integers

IsMultiple $(x, y)=$ " x is a multiple of y "
$\forall x((x>1 \wedge \neg(x=y)) \rightarrow \neg$ IsMultiple $(y, x))$
$\equiv \operatorname{Prime}(y)$
$\forall x \exists y((x<y) \wedge \operatorname{Prime}(y))$
$\forall x \exists y((x<y) \wedge(\forall x((x>1 \wedge \neg(x=y)) \rightarrow \neg \operatorname{IsMultiple}(y, x))))$

scope of quantifiers

example:

Domain = positive integers

IsMultiple $(x, y)=$ " x is a multiple of y "
$\forall x((x>1 \wedge \neg(x=y)) \rightarrow \neg$ IsMultiple $(y, x))$
$\equiv \operatorname{Prime}(y)$
$\forall x \exists y((x<y) \wedge \operatorname{Prime}(y) \wedge \operatorname{Prime}(y+2))$
$\forall x \exists y\left(\begin{array}{c}(x<y) \wedge(\forall x((x>1 \wedge \neg(x=y)) \rightarrow \neg \text { IsMultiple }(y, x))) \\ y+2 \\ \wedge+2 \\ \wedge(\forall x((x>1 \wedge \neg(x=\not x)) \rightarrow \neg \text { IsMultiple }(y, x)))\end{array}\right)$

scope of quantifiers

example:

Domain = positive integers

IsMultiple $(x, y)=$ " x is a multiple of y "
$\forall x((x>1 \wedge \neg(x=y)) \rightarrow \neg$ IsMultiple $(y, x))$
$\equiv \operatorname{Prime}(y)$
$\forall x \exists y\left((x<y) \wedge \operatorname{Prime}(y) \wedge \operatorname{Prime}(y+2) \wedge\left(x<y^{2}\right)\right)$

$$
\forall x \exists y\binom{(x<y) \wedge(\forall x((x>1 \wedge \neg(x=y)) \rightarrow \neg \text { IsMultiple }(y, x)))}{\wedge(\forall x((x>1 \wedge \neg(x=y)) \rightarrow \neg \text { IsMultiple }(y, x))) \wedge\left(x<y^{2}\right)}
$$

scope of quantifiers

$$
\begin{aligned}
& \frac{\exists x(P(x) \wedge Q(x))}{F} \text { vs. } \frac{(\exists x P(x)) \wedge(\exists x Q(x))}{T} \\
& D \text { main }=\text { sea creature" } \\
& P(x)=" x \text { has fins" } \\
& Q(x)=" x \text { has a shell" }
\end{aligned}
$$

nested quantifiers

- Bound variable names don't matter

$$
\forall x \exists y P(x, y) \equiv \forall a \exists b P(a, b)
$$

- Positions of quantifiers can sometimes change

$$
\forall x(Q(x) \wedge \exists y P(x, y)) \equiv \forall x \exists y(Q(x) \wedge P(x, y))
$$

- But: order is important...

$$
\forall x \exists y P(x, y) \leftarrow \exists y \forall x P(x, y)
$$

quantification with two variables

expression	when true	when false
$\forall \mathrm{x} \forall \mathrm{yP}(\mathrm{x}, \mathrm{y})$		
$\exists \mathrm{x} \exists \mathrm{yP}(\mathrm{x}, \mathrm{y})$		
$\forall \mathrm{x} \exists \mathrm{yP}(\mathrm{x}, \mathrm{y})$		
$\exists \mathrm{x} \forall \mathrm{yP}(\mathrm{x}, \mathrm{y})$		

$\forall x \exists y P(x, y)$

quantification with two variables

expression	when true	when false
$\forall \mathrm{x} \forall \mathrm{yP}(\mathrm{x}, \mathrm{y})$		
$\exists \mathrm{x} \exists \mathrm{yP}(\mathrm{x}, \mathrm{y})$		
$\forall \mathrm{x} \exists \mathrm{yP}(\mathrm{x}, \mathrm{y})$		
$\exists \mathrm{x} \forall \mathrm{yP}(\mathrm{x}, \mathrm{y})$		

logal inference

- So far we've considered:
- How to understand and express things using propositional and predicate logic
- How to compute using Boolean (propositional) logic
- How to show that different ways of expressing or computing them are equivalent to each other
- Logic also has methods that let us infer implied properties from ones that we know
- Equivalence is only a small part of this

applications of logical inference

- Software Engineering
- Express desired properties of program as set of logical constraints
- Use inference rules to show that program implies that those constraints are satisfied
- Artificial Intelligence
- Automated reasoning
- Algorithm design and analysis
- e.g., Correctness, Loop invariants.
- Logic Programming, e.g. Prolog

foundations of rational thought...
- Express desired outcome as set of constraints
- Automatically apply logic inference to derive solution
- Start with hypotheses and facts
- Use rules of inference to extend set of facts
- Result is proved when it is included in the set

an inference rule: Modus Ponens

- If p and $p \rightarrow q$ are both true then q must be true
- Write this rule as

$$
\frac{\mathrm{p}, \mathrm{p} \rightarrow \mathrm{q}}{\therefore \mathrm{q}}
$$

- Given:
- If it is Monday then you have a 311 class today.
- It is Monday.
- Therefore, by modus ponens:
- You have a 311 class today.

Show that r follows from $p, p \rightarrow q$, and $q \rightarrow r$

1.	p	given
2.	$\mathrm{p} \rightarrow \mathrm{q}$	given
3.	$\mathrm{q} \rightarrow \mathrm{r}$	given
4.	q	modus ponens from 1 and 2
5.	r	modus ponens from 3 and 4

proofs can use equivalences too

Show that $\neg p$ follows from $p \rightarrow q$ and $\neg q$

$$
\begin{array}{ll}
\text { 1. } & p \rightarrow q \\
\text { 2. } & \neg q \\
\text { 3. } & \neg q \rightarrow \neg p \\
\text { 4. } & \neg p
\end{array}
$$

inference rules

- Each inference rule is written as:

$$
\frac{\mathrm{A}, \mathrm{~B}}{\therefore \mathrm{C}, \mathrm{D}}
$$

...which means that if both A and B are true then you can infer C and you can infer D.

- For rule to be correct $(A \wedge B) \rightarrow C$ and $(A \wedge B) \rightarrow D$ must be a tautologies
- Sometimes rules don't need anything to start with. These rules are called axioms:
- e.g. Excluded Middle Axiom

$$
\therefore \mathrm{p} \vee \neg \mathrm{p}
$$

simple propositional inference rules

Excluded middle plus two inference rules per binary connective, one to eliminate it and one to introduce it:

$$
\begin{gathered}
\frac{p \wedge q}{\therefore p, q} \\
\sim q \rightarrow p \\
\frac{p \vee q, \neg p}{\therefore q} \\
\frac{p, p \rightarrow q}{} \therefore q
\end{gathered}
$$

p, q
5. P
$\therefore \mathrm{p} \wedge \mathrm{q}$
3.
$a \rightarrow b$
4. $b \sim c$

$\therefore p \vee q, q \vee p \quad 1 \cup q$

II. $p \rightarrow q$

Direct Proof Rule Not like other rules

important: applications of inference rules

- You can use equivalences to make substitutions of any sub-formula. $4 .(p \longrightarrow q) \longrightarrow r$

$$
\text { 5. }(\neg p \vee 8) \longrightarrow r \text { by L.O.I. }
$$

- Inference rules only can be applied to whole formulas (not correct otherwise)

$$
\zeta \begin{array}{ll}
\text { e.g. } 1 . p \rightarrow q & \text { given } \\
\quad 2 .(p \nabla r) \rightarrow q & \text { intro } \vee \text { from } 1 .
\end{array}
$$

direct proof of an implication

- The direct proof rule: If you have such 3 proof then you can coonclude that $\mathrm{p} \rightarrow \mathrm{q}$ is true

