cse 311: foundations of computing

Fall 2015

Lecture 6: Predicate Logic, Logical Inference

quantifiers

$$\forall x \ P(x)$$
P(x) is true for every x in the domain read as "for all x, P of x"

$$\exists x P(x)$$

There is an x in the domain for which P(x) is true read as "there exists x, P of x"

negations of quantifiers

not every positive integer is prime

The fire
$$f(x) = f(x)$$
 and $f(x) = f(x)$ some positive integer is not prime

prime numbers do not exist

$$\forall x \land Prime(x) \equiv \neg \exists_x Prime(x)$$
every positive integer is not prime

negations of quantifiers

 $\forall x PurpleFruit(x)$

Domain:

Fruit

PurpleFruit(x)

Which one is equal to $\neg \forall x \text{ PurpleFruit}(x)$?

∃x PurpleFruit(x)?

∃x ¬PurpleFruit(x)?

de Morgan's laws for quantifiers

$$\forall x \ (P_{a_{k_1}} A_{k_1} + (x) \rightarrow P_{k_2}) \Rightarrow P_{k_3} = \exists x \neg P_{k_3}$$

$$\neg \forall x \ P_{k_3} = \forall x \neg P_{k_3} = \forall x \neg P_{k_2} = P_{k_3} = P_{k_4} = P$$

$$= \neg P(K) \vee \neg P(K) \vee \neg \neg$$

 $= \exists x \neg P(K)$

de Morgan's laws for quantifiers

"There is no largest integer."

"For every integer there is a larger integer."

example: Notlargest(x) $\equiv \exists y \text{ Greater } (y, x)$

 $\equiv \exists z Greater (z, x)$

truth value:

doesn't depend on y or z "bound variables" does depend on x "free variable"

quantifiers only act on free variables of the formula they quantify

$$\forall x (\exists y (P(x,y) \rightarrow \forall x Q(y,x)))$$

$$\equiv \forall x (\exists y (P(x,y) \rightarrow \forall x Q(y,x)))$$

$$\equiv \forall x (\exists y (P(x,y) \rightarrow \forall x Q(y,x)))$$

example:

```
Domain = positive integers

IsMultiple(x, y) = "x \text{ is a multiple of } y"

\forall x ((x > 1 \land \neg(x = y)) \rightarrow \neg \text{IsMultiple}(y, x))
\equiv \text{Prime}(y)
```

$$\forall x \,\exists y \, \left((x < y) \, \wedge \left(\forall x \, \left((x > 1 \, \wedge \, \neg (x = y)) \rightarrow \neg \text{IsMultiple}(y, x) \right) \right) \right)$$

 $\forall x \exists y ((x < y) \land Prime(y))$

example:

Domain = positive integers

IsMultiple(x, y) = "x is a multiple of y" $\forall x ((x > 1 \land \neg(x = y)) \rightarrow \neg IsMultiple(y, x))$ $\equiv Prime(y)$

$$\forall x \exists y ((x < y) \land Prime(y) \land Prime(y + 2))$$

$$\forall x \exists y \begin{pmatrix} (x < y) \land \left(\forall x \left((x > 1 \land \neg (x = y)) \rightarrow \neg \text{IsMultiple}(y, x) \right) \right) \\ \land \left(\forall x \left((x > 1 \land \neg (x = y)) \rightarrow \neg \text{IsMultiple}(y, x) \right) \right) \end{pmatrix}$$

example:

Domain = positive integers

IsMultiple(x, y) = "x is a multiple of y" $\forall x ((x > 1 \land \neg(x = y)) \rightarrow \neg IsMultiple(y, x))$ $\equiv Prime(y)$

$$\forall x \exists y ((x < y) \land Prime(y) \land Prime(y + 2) \land (x < y^2))$$

$$\forall x \exists y \left((x < y) \land \left(\forall x \left((x > 1 \land \neg (x = y)) \rightarrow \neg IsMultiple(y, x) \right) \right) \\ \land \left(\forall x \left((x > 1 \land \neg (x = y)) \rightarrow \neg IsMultiple(y, x) \right) \right) \land (x < y^2) \right)$$

$$\exists x \ (P(x) \land Q(x)) \quad vs. \quad (\exists x P(x)) \land (\exists x Q(x))$$

$$Domain = \text{Sea creature}$$

$$P(x) = \text{If } x \text{ has } fins \text{If } x \text{ has a shell I}$$

$$Q(x) = \text{If } x \text{ has a shell I}$$

nested quantifiers

Bound variable names don't matter

$$\forall$$
 x \exists y P(x, y) \equiv \forall a \exists b P(a, b)

Positions of quantifiers can sometimes change

$$\forall x (Q(x) \land \exists y P(x, y)) \equiv \forall x \exists y (Q(x) \land P(x, y))$$

But: order is important...

predicate with two variables

quantification with two variables

expression	when true	when false
$\forall x \forall y P(x, y)$		
∃ x ∃ y P(x, y)		
∀ x ∃ y P(x, y)		
∃ x ∀ y P(x, y)		

TTTTT TT		у
X F	X	ナナ ナ ナ ナ ナ ナ ナ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・

$\exists x \; \exists y \; P(x,y)$

	y
X	F F F F F T \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

у	
F F F F F F F	

quantification with two variables

expression	when true	when false
$\forall x \forall y P(x, y)$		
∃ x ∃ y P(x, y)		
∀ x ∃ y P(x, y)		
∃ x ∀ y P(x, y)		

logal inference

- So far we've considered:
 - How to understand and express things using propositional and predicate logic
 - How to compute using Boolean (propositional) logic
 - How to show that different ways of expressing or computing them are equivalent to each other
- Logic also has methods that let us infer implied properties from ones that we know
 - Equivalence is only a small part of this

applications of logical inference

Software Engineering

- Express desired properties of program as set of logical constraints
- Use inference rules to show that program implies that those constraints are satisfied
- Artificial Intelligence
 - Automated reasoning
- Algorithm design and analysis
 - e.g., Correctness, Loop invariants.

foundations of rational thought...

- Logic Programming, e.g. Prolog
 - Express desired outcome as set of constraints
 - Automatically apply logic inference to derive solution

proofs

- Start with hypotheses and facts
- Use rules of inference to extend set of facts
- Result is proved when it is included in the set

an inference rule: *Modus Ponens*

• If p and p \rightarrow q are both true then q must be true

Write this rule as
 p, p → q
 q

- Given:
 - If it is Monday then you have a 311 class today.
 - It is Monday.
- Therefore, by modus ponens:
 - You have a 311 class today.

Show that r follows from p, p \rightarrow q, and q \rightarrow r

```
    p given
    p → q given
    q → r given
    q modus ponens from 1 and 2 modus ponens from 3 and 4
```

proofs can use equivalences too

Show that $\neg p$ follows from $p \rightarrow q$ and $\neg q$

```
1. p \rightarrow q given
```

- 2. ¬ q given
- 3. $\neg q \rightarrow \neg p$ contrapositive of 1
- 4. $\neg p$ modus ponens from 2 and 3

inference rules

Each inference rule is written as: —

...which means that if both A and B are true then you can infer C and you can infer D.

- For rule to be correct $(A \land B) \rightarrow C$ and $(A \land B) \rightarrow D$ must be a tautologies
- Sometimes rules don't need anything to start with. These rules are called axioms:
 - e.g. Excluded Middle Axiom

simple propositional inference rules

Excluded middle plus two inference rules per binary connective, one to eliminate it and one to introduce it:

important: applications of inference rules

You can use equivalences to make substitutions
 of any sub-formula. 4. (P→ ?) → Y
 √ ?) → Y
 √ . □ . □

• Inference rules only can be applied to whole formulas (not correct otherwise)

e.g. 1. $p \rightarrow q$ given $2. (p \lor r) \rightarrow q \text{ intro } \lor \text{ from 1.}$

Does not follow! e.g. p=F, q=F, r=T_q

direct proof of an implication

• p of denotes a proof of q given p as an assumption

The direct proof rule:
 If you have such a proof then you can conclude that p → q is true

Example:

proof subroutine