cse 311: foundations of computing

Fall 2015

Lecture 6: Predicate Logic, Logical Inference

quantifiers

```
\forall x \ P(x)
P(x) is true for every x in the domain
read as "for all x, P of x"
```

$$\exists x P(x)$$

There is an x in the domain for which P(x) is true read as "there exists x, P of x"

negations of quantifiers

• not every positive integer is prime Domain? $\exists \times \neg Prime(\times) = \neg \forall \times Prime(\times) Rs. \text{ Integers}$

some positive integer is not prime

prime numbers do not exist

every positive integer is not prime

negations of quantifiers

∀x PurpleFruit(x)

Domain: Fruit

PurpleFruit(x)

Which one is equal to $\neg \forall x \text{ PurpleFruit}(x)$?

• ∃x PurpleFruit(x)?

• ∃x ¬PurpleFruit(x)?

de Morgan's laws for quantifiers

$$\neg \forall x \ P(x) \equiv \exists x \neg P(x) \neg \exists x \ P(x) \equiv \forall x \neg P(x)$$

D = Jomain

$$\forall \times P(X) \equiv (P(X_1) \wedge P(X_2) \wedge \dots)$$
as $\{X_i, X_i, X_i\} = 0$ for D
$$\exists \times P(X_i) \equiv (P(X_1) \vee P(X_2) \wedge \dots)$$

$$= (\neg P(X_i) \vee \neg P(X_2) \wedge \dots)$$

$$\equiv (\neg P(X_i) \vee \neg P(X_2) \wedge \dots)$$

$$\equiv (\neg P(X_i) \vee \neg P(X_2) \wedge \dots)$$

de Morgan's laws for quantifiers

"There is no largest integer."

"For every integer there is a larger integer."

example: Notlargest(x) $\equiv \exists y \text{ Greater } (y, x)$

 $\equiv \exists z Greater (z, x)$

truth value:

doesn't depend on y or z "bound variables" does depend on x "free variable"

quantifiers only act on free variables of the formula they quantify

$$\forall x (\exists y (P(x,y) \rightarrow \forall x Q(y,x)))$$

$$= \forall x (\exists y (P(x,y) \rightarrow \forall x Q(y,x)))$$

$$= \forall x (\exists y (P(x,y) \rightarrow \forall x Q(y,x)))$$

$$= \forall x (\exists y (P(x,y) \rightarrow \forall x Q(y,x)))$$

$$= \forall x (\exists y (P(x,y) \rightarrow \forall x Q(y,x)))$$

$$= \forall x (\exists y (P(x,y) \rightarrow \forall x Q(y,x)))$$

$$= \forall x (\exists y (P(x,y) \rightarrow \forall x Q(y,x)))$$

example:

```
Domain = positive integers

IsMultiple(x, y) = "x \text{ is a multiple of } y"

\forall x ((x > 1 \land \neg(x = y)) \rightarrow \neg \text{IsMultiple}(y, x))
\equiv \text{Prime}(y)
```

$$\forall x \,\exists y \, \left((x < y) \, \wedge \left(\forall x \, \left((x > 1 \, \wedge \, \neg (x = y)) \rightarrow \neg \text{IsMultiple}(y, x) \right) \right) \right)$$

 $\forall x \exists y ((x < y) \land Prime(y))$

example:

Domain = positive integers

IsMultiple(x, y) = "x is a multiple of y" $\forall x ((x > 1 \land \neg(x = y)) \rightarrow \neg IsMultiple(y, x))$ $\equiv Prime(y)$

$$\forall x \exists y ((x < y) \land Prime(y) \land Prime(y + 2))$$

$$\forall x \exists y \begin{pmatrix} (x < y) \land \left(\forall x \left((x > 1 \land \neg (x = y)) \rightarrow \neg IsMultiple(y, x) \right) \right) \\ \land \left(\forall x \left((x > 1 \land \neg (x = y)) \rightarrow \neg IsMultiple(y, x) \right) \right) \end{pmatrix}$$

example:

function f(x, y, z) $x = y + z + \alpha$ gers $y + z + \alpha$ Domain = positive integers

IsMultiple(x, y) = "x is a multiple of y"

$$\forall x \left((x > 1 \land \neg (x = y)) \rightarrow \neg IsMultiple(y, x) \right)$$

$$\equiv Prime(y)$$

$$\forall x \exists y ((x < y) \land Prime(y) \land Prime(y + 2) \land (x < y^2))$$

$$\forall x \exists y \begin{pmatrix} (x < y) \land \left(\forall x \left((x > 1 \land \neg (x = y)) \rightarrow \neg \text{IsMultiple}(y, x) \right) \right) \\ \land \left(\forall x \left((x > 1 \land \neg (x = y)) \rightarrow \neg \text{IsMultiple}(y, x) \right) \right) \land (x < y^2) \end{pmatrix}$$

$$\exists x (P(x) \land Q(x)) \quad vs. \quad (\exists x P(x)) \land (\exists x Q(x))$$

$$Domain = \{20005 \text{ pop stars}\}$$

$$P(x) = x \quad dated \quad J. M.$$

$$Q(x) = x \quad is \quad J. M.$$

$$Q(x) = x \quad is \quad J. M.$$

$$(\exists x P(x)) \land (\exists x Q(x)) = t$$

$$\exists x (P(x) \land Q(x)) = F$$

nested quantifiers

Bound variable names don't matter

$$\forall x \exists y P(x, y) \equiv \forall a \exists b P(a, b)$$

$$\neq \forall x \exists y P(x, y) \equiv \forall a \exists b P(a, b)$$

Positions of quantifiers can sometimes change

$$\forall x (Q(x) \land \exists y P(x, y)) \equiv \forall x \exists y (Q(x) \land P(x, y))$$

But: order is important...

$$\forall x \exists y \neq \exists y \forall x$$

predicate with two variables

quantification with two variables

expression	when true	when false
$\forall x \forall y P(x, y)$		
∃ x ∃ y P(x, y)		
∀ x ∃ y P(x, y)		
∃ x ∀ y P(x, y)		

	у
	T T T T
X	

$\exists x \; \exists y \; P(x,y)$

	y
X	ト ト ト · · · · · · · · · · · · · · · · ·

	y
X	F F T+TT

quantification with two variables

expression	when true	when false
$\forall x \forall y P(x, y)$		
∃ x ∃ y P(x, y)		
∀ x ∃ y P(x, y)		
∃ x ∀ y P(x, y)		

logal inference

- So far we've considered:
 - How to understand and express things using propositional and predicate logic
 - How to compute using Boolean (propositional) logic
 - How to show that different ways of expressing or computing them are equivalent to each other
- Logic also has methods that let us infer implied properties from ones that we know
 - Equivalence is only a small part of this

applications of logical inference

Software Engineering

- Express desired properties of program as set of logical constraints
- Use inference rules to show that program implies that those constraints are satisfied
- Artificial Intelligence
 - Automated reasoning
- Algorithm design and analysis
 - e.g., Correctness, Loop invariants.

foundations of rational thought...

- Logic Programming, e.g. Prolog
 - Express desired outcome as set of constraints
 - Automatically apply logic inference to derive solution

proofs

- Start with hypotheses and facts
- Use rules of inference to extend set of facts
- Result is proved when it is included in the set

an inference rule: *Modus Ponens*

• If p and p \rightarrow q are both true then q must be true

Write this rule as
 p, p → q
 q

- Given:
 - If it is Monday then you have a 311 class today.
 - It is Monday.
- Therefore, by modus ponens:
 - You have a 311 class today.

Show that r follows from p, p \rightarrow q, and q \rightarrow r

```
    p given
    p → q given
    q → r given
    q modus ponens from 1 and 2 modus ponens from 3 and 4
```

proofs can use equivalences too

Show that $\neg p$ follows from $p \rightarrow q$ and $\neg q$

```
1. p \rightarrow q given
```

- 2. ¬ q given
- 3. $\neg q \rightarrow \neg p$ contrapositive of 1
- 4. $\neg p$ modus ponens from 2 and 3

inference rules

Each inference rule is written as:

...which means that if both A and B are true then you can infer C and you can infer D.

- For rule to be correct $(A \land B) \rightarrow C$ and $(A \land B) \rightarrow D$ must be a tautologies
- Sometimes rules don't need anything to start with. These rules are called axioms:
 - e.g. Excluded Middle Axiom

simple propositional inference rules

Excluded middle plus two inference rules per binary connective, one to eliminate it and one to introduce it:

$$\begin{array}{ccccc} \underline{p} \wedge \underline{q} & \underline{p}, \underline{q} \\ \vdots & p, q & \\ p \vee \underline{q}, \neg \underline{p} & \\ p \vee \underline{q}, \neg \underline{p} & \\ p \vee \underline{q}, \neg \underline{p} & \\ p \vee \underline{q}, q \vee \underline{q} & \\$$

important: applications of inference rules

- You can use equivalences to make substitutions of any sub-formula. $| \mathcal{D} \rightarrow \mathcal{I} = 1$
- Inference rules only can be applied to whole formulas (not correct otherwise)
 - e.g. 1. $p \rightarrow q$ given $2 \cdot (p \lor r) \rightarrow q$ intro \lor from 1.

Does not follow! e.g. p=F, q=F, r=T ... P V ~

direct proof of an implication

- $p \Rightarrow q$ denotes a proof of q given p as an assumption
- The direct proof rule:

If you have such a proof then you can conclude that $p \rightarrow q$ is true

Example:

proof subroutine

1. p assumption
2.
$$p \lor q$$
 intro for \lor from 1
3. $p \to (p \lor q)$ direct proof rule