cse 311: foundations of computing

Fall 2015
Lecture 6: Predicate Logic, Logical Inference

YOUVE SHOWN THE INCONSISTENCY= | prap DR, KNUTH, | T AM WRITING T0 (oLLECT
AND THUS INVALIDITY — OF BASIC FROM YOU THE $3,372,56M.48
LOGIC ITSELF. T AM OWED FOR DISCOVERING
1,317,408 ERRORS IN 7 AT
O QYIS FROGRAYDING...

%)

quantifiers

Vx P(x)
P(x) is true for every x in the domain
read as “for all x, P of x"

Ix P(x)
There is an x in the domain for which P(x) is true
read as “there exists x, P of x”

negations of quantifiers

not every positive integer IS prime Domin !

T % "Prime(X) = A ¥ Pine®N B8 Tlbepe s

some positive Iinteger Is not prime

prime numbers do not exist

every positive integer Is not prime

negations of quantifiers

Vx PurpleFruit(x) Domain:

Fruit

PurpleFruit(x)

Which one is equal to —\x PurpleFruit(x)?

o 3x PurpleFruit(x)?

 3x —PurpleFruit(x)?

de Morgan’s laws for quantifiers

—Vx P(x) = 3Ix =P(x)
—3x P(x) = Vx—=P(x)

D = \O"V\Miv\

ey P = (Pown Péor nee)

“ {\(s—s v je S OV D
Ny pro = (Rl Ry T

1l

¥ x P = (PN POG)A -~)
= (’1 P(\Lﬂ v PNL\ - --

=

= JIx - P «)

&

)

de Morgan’s laws for quantifiers

—Vx P(x) = dx—=P(x)
—dx P(x) = Vx —P(x)

“There 1s no largest integer.”

—3dx Vy (x2y)
= VXx=Vy (x2y)
= VXx dy—(x2y)
= Vx 3y (y>x)

“For every integer there Is a larger integer.”

scope of quantifiers

example: Notlargest(x) = 3y Greater (y, x)
= 3z Greater (z, x) A

) \g‘®__—
truth value;

doesn't depend on y or z “bound variables” I\C\m@>
X

does depend on x “free variable” ©

quantifiers only act on free variables of the formula they quantify
Vx @y (P y) -V xQ(y,)

— AF X (%‘j@(wj) — Yz Q(‘jz%)>>
= w2 (Jy PEm — ¥x & (X))

scope of quantifiers

example:
Domain = positive integers
[sMultiple(x, y) = “x 1s a multiple of y"
Vx ((x > 1 A=(x = y)) » —IsMultiple(y, x))
= Prime(y)

vx 3y ((x < y) APrime(y))

Vx 3y ((x <y)A (Vx ((x >1A-(x = y)) — —IsMultiple(y, x))))

scope of quantifiers

example:
Domain = positive integers
[sMultiple(x, y) = “x 1s a multiple of y"
Vx ((x > 1 A=(x = y)) » —IsMultiple(y, x))
= Prime(y)

vx 3y ((x < y) A Prime(y) A Prime(y + 2))

x<y)A (‘v’x ((x >1Aa(x = y)) — —IsMultiple(y, x)))
Vx 3y VAL . Y42
A (‘v’x ((x >1A=(x = y‘)) — —IsMultiple(y, x)))

scope of quantifiers

\“PU\V\UA\\L‘*\ f(“/“h)

example:
Domain = nositive X =Jr &I
omain = positive integers e o XY

IsMultiple(x, y) = “x is a multiple of y"
Vx ((x > 1 A=(x = y)) » —IsMultiple(y, x))
= Prime(y)

vx 3y ((x < y) A Prime(y) A Prime(y + 2) A (x < y?))

VAL v 42

x<y)A (Vx ((x >1A=(x = y)) — —IsMultiple(y, x)))
i (Vx ((x >1A=(x)/)) — ﬂIsMultlplegy x))) A(x < y?)

scope of quantifiers

3x (P AQK) vs. (3xP()A3x QW)
Dewain = {ZO@OS pop shacs)
Pl = x dekeh J M
D(x) = x 5 T+~

(D x P VA (Ox @) =7

m—
——

9><<1>(>O/x@2(\07 = F

nested quantifiers

* Bound variable names don't matter
Vx3yP(x,y)=Vva3abP(ab)

£+ -\/x@x P(ﬁ,X))

* Positions of quantlflers can sometimes change
vV x(Q(x) A3y P(x,y)) =V x3y(Qx) AP(x,)

* But: orderis important...

¥ x Jy # 3y ¥ X

predicate with two variables

quantification with two variables

expression when true when false

VXV yP(x,y)

Ix3yP(x,y)

vV x3yP(x,y)

3x VyP(x,y)

Vx Vy P(x,y)

dx 3y P(x,y)

Vx 3y P(x,y)

y
- - T
T
. - - = T
~ T—\
- T
o -

dx Vy P(x,y)

y ---
=
-
/‘r——— —
\,_
T T T TT - TN T

quantification with two variables

expression when true when false

VXV yP(x,y) /

Ix3yP(x,y) /

vV x3yP(x,y) \/

3x VyP(x,y)

logal inference

e So far we've considered:

— How to understand and express things using propositional
and predicate logic

— How to compute using Boolean (propositional) logic

— How to show that different ways of expressing or
computing them are equivalent to each other

* Logic also has methods that let us infer implied properties
from ones that we know

— Equivalence is only a small part of this

applications of logical inference

Software Engineering
— Express desired properties of program as set of logical constraints

— Use inference rules to show that program implies that those
constraints are satisfied

Artificial Intelligence
— Automated reasoning

Algorithm design and analysis
— e.g., Correctness, Loop invariants.

MAKING HER DEBUT AS FOX NEWS ANALYST

[SARAHPAUN o)

: : foundations of rational thought...
Logic Programming, e.g. Prolog

— Express desired outcome as set of constraints
— Automatically apply logic inference to derive solution

proofs

« Start with hypotheses and facts
« Use rules of inference to extend set of facts
 Result is proved when it is Included in the set

an inference rule: Modus Ponens

If p and p — q are both true then g must be true

Write this rule as P,.P—(
" q
Given:
— If it 1s Monday then you have a 311 class today.
— It 1s Monday.

Therefore, by modus ponens:
— You have a 311 class today.

proofs

Show that r follows fromp,p — q,andq —r

P given
p—>q given
qg—r given
q modus ponens from 1 and 2
r modus ponens from 3 and 4

Al S e

proofs can use equivalences too

Show that —p follows from p — g and —q

1 P—qQ given

2 — given

3 —q—>—=p contrapositive of 1

4 —p modus ponens from 2 and 3

inference rules

A, B
~C,D

e Each inference rule is written as:

...which means that if both A and B
are true then you can infer C and
you can infer D.

— For rule to be correct (A AB) — C and
(A A B) — D must be a tautologies

« Sometimes rules don't need anything to start with. These rules
are called axioms:

— e.g. Excluded Middle Axiom

simple propositional inference rules

Excluded middle plus two inference rules per binary connective, one to

eliminate it and one to introduce It; _—
pAQ p. g
- P, q - PA(Q |
pVvg,—p P Z
e Lpva,qvp

P.P—¢
.

Direct Proof Rule
Not like other rules

important: applications of inference rules

 You can use equivalences to make substitutions
of any sub-formula. p—=3q =P v 9

» Inference rules only can be applied tgwhole f?mm&sw
(not correct otherwise) (pug) —
e.g. p—q given M{faz/w\w

2{pvT=q introvfomt— '

Does not follow! e.qg. p=F, q=F, r=T . P vy

direct proof of an implication

* p = q denotes a proof of q given p as an assumption

 The direct proof rule:
If you have such a proof then you can conclude
that p — qis true

Example: proof subroutine

1. p assumption
2. pvq Intro for v from 1

3. p—>(@(pvQq) direct proof rule

