Homework \#1 Due Today at 11:59pm

Your Gradescope account is created by your UW/CSE email address Homework \#2 will be posted today and it is due next Friday

TA Office Hours

| TA | Office hours | Room |
| :--- | :--- | :--- | :--- |
| Sam Castle | Wed, 12:00-1:00 | CSE 021 |
| Jiechen Chen | Tue, 4:00-5:00 | CSE 218 |
| Rebecca Leslie | Mon, 8:30-9:30 | CSE 218 |
| Evan McCarty | Tue, 11:30-12:30 | CSE 220 |
| Tim Oleskiw | Tue, 3:00-4:00 | CSE 218 |
| Spencer Peters Tue, 1:00-2:00 | CSE 218 | |
| Robert Weber | Wed, 3:30-4:30 | CSE 678 (except Oct |
| Ian Zhu | Thu, 4:30-5:30 | CSE 021 |

cse 311: foundations of computing

Fall 2015

Lecture 5: Canonical forms and predicate logic

Given a truth table:

1. Write the Boolean expression
2. Minimize the Boolean expression
3. Draw as gates
4. Map to available gates
(2) $\begin{aligned} \mathrm{F} & =A^{\prime} B C^{\prime}+A^{\prime} B C+A B^{\prime} C+A B \\ & =A^{\prime} B\left(C^{\prime}+C\right)+A C\left(B^{\prime}+B\right) \\ & =A^{\prime} B+A C\end{aligned}$

- Truth table is the unique signature of a Boolean function
- The same truth table can have many gate realizations
- we've seen this already
- depends on how good we are at Boolean simplification
- Canonical forms
- standard forms for a Boolean expression
- we all come up with the same expression
- also known as Disjunctive Normal Form (DNF)
- also known as minterm expansion

Product term (or minterm)

- ANDed product of literals - input combination for which output is true
- each variable appears exactly once, true or inverted (but not both)

A	B	C	minterms
0	0	0	$A^{\prime} B^{\prime} C^{\prime}$
0	0	1	$\mathrm{~A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}$
0	1	0	$\mathrm{~A}^{\prime} \mathrm{BC}^{\prime}$
0	1	1	$\mathrm{~A}^{\prime} \mathrm{BC}$
1	0	0	$\mathrm{AB}^{\prime} C^{\prime}$
1	0	1	$A B^{\prime} \mathrm{C}$
1	1	0	$A B C^{\prime}$
1	1	1	$A B C$

$$
\begin{aligned}
& \text { F in canonical form: } \\
& \begin{aligned}
F(A, B, C) & =A^{\prime} B^{\prime} C+A^{\prime} B C+A B^{\prime} C+A B C^{\prime}+A B C \\
\text { canonical form } & \neq \text { minimal form } \\
F(A, B, C) & =A^{\prime} B^{\prime} C+A^{\prime} B C+A B^{\prime} C+A B C+A B C^{\prime} \\
& =\left(A^{\prime} B^{\prime}+A^{\prime} B+A B^{\prime}+A B\right) C+A B C^{\prime} \\
& =\left(\left(A^{\prime}+A\right)\left(B^{\prime}+B\right)\right) C+A B C^{\prime} \\
& =C+A B C^{\prime} \\
& =A B C^{\prime}+C \\
& =A B+C
\end{aligned}
\end{aligned}
$$

- Also known as Conjunctive Normal Form (CNF)
- Also known as maxterm expansion

Complement of function in sum-of-products form:

$$
-F^{\prime}=A^{\prime} B^{\prime} C^{\prime}+A^{\prime} B C^{\prime}+A B^{\prime} C^{\prime}
$$

Complement again and apply de Morgan's and get the product-of-sums form:

$$
\begin{aligned}
& -\left(F^{\prime}\right)^{\prime}=\left(A^{\prime} B^{\prime} C^{\prime}+A^{\prime} B C^{\prime}+A B^{\prime} C^{\prime}\right)^{\prime} \\
& -F=(A+B+C)\left(A+B^{\prime}+C\right)\left(A^{\prime}+B+C\right)
\end{aligned}
$$

Sum term (or maxterm)

- ORed sum of literals - input combination for which output is false
- each variable appears exactly once, true or inverted (but not both)

A	B	C	maxterms
0	0	0	$A+B+C$
0	0	1	$A+B+C^{\prime}$
0	1	0	$A+B^{\prime}+C$
0	1	1	$A+B^{\prime}+C^{\prime}$
1	0	0	$A^{\prime}+B+C$
1	0	1	$A^{\prime}+B+C^{\prime}$
1	1	0	$A^{\prime}+B^{\prime}+C$
1	1	1	$A^{\prime}+B^{\prime}+C^{\prime}$

$$
\begin{aligned}
& \text { F in canonical form: } \\
& \begin{aligned}
F(A, B, C)= & (A+B+C)\left(A+B^{\prime}+C\right)\left(A^{\prime}+B+C\right) \\
\text { canonical form } & \neq \text { minimal form } \\
F(A, B, C)= & (A+B+C)\left(A+B^{\prime}+C\right)\left(A^{\prime}+B+C\right) \\
= & (A+B+C)\left(A+B^{\prime}+C\right) \\
& (A+B+C)\left(A^{\prime}+B+C\right) \\
= & (A+C)(B+C)
\end{aligned}
\end{aligned}
$$

- Propositional Logic
- If Pikachu doesn't wear pants, then he flies on Bieber's jet unless Taylor is feeling lonely.
- Predicate Logic
- If x, y, and z are positive integers, then $x^{3}+y^{3} \neq z^{3}$.

Predicate or Propositional Function

- A function that returns a truth value, e.g.,
" x is a cat"
" x is prime"
"student x has taken course $y "$
" $x>y$ "
" $x+y=z$ " or $\operatorname{Sum}(x, y, z)$
" $5<x^{\prime \prime}$
Predicates will have variables or constants as arguments.

We must specify a "domain of discourse", which is the possible things we're talking about.
" x is a cat"
(e.g., mammals)
" x is prime"
(e.g., positive whole numbers)
student x has taken course $y^{"}$ (e.g., students and courses)

quantifiers

$\forall x P(x)$
$\mathrm{P}(\mathrm{x})$ is true for every x in the domain read as "for all x, P of x "
$\exists x P(x)$
There is an x in the domain for which $\mathrm{P}(\mathrm{x})$ is true read as "there exists x, P of x "

- $\exists x \operatorname{Even}(x)$

Domain:
 Positive Integers

```
Even(x)
Odd(x)
Prime(x)
Greater(x,y)
    (or "x>y")
Equal(x,y)
    (or "x=y")
Sum(x,y,z)
    (or "z=x+y")
```

- $\forall x \operatorname{Odd}(\mathrm{x})$
- $\quad \forall x(\operatorname{Even}(x) \vee O d d(x))$
- $\exists x(\operatorname{Even}(x) \wedge \operatorname{Odd}(x))$
- $\forall x$ Greater $(\mathrm{x}+1, \mathrm{x})$
- $\exists x(\operatorname{Even}(x) \wedge \operatorname{Prime}(x))$
- $\forall x \exists y$ Greater (y, x)

```
Domain:
Positive Integers
```

```
Even(x)
Odd(x)
Prime(x)
Greater(x,y)
    (or "x>y")
Equal(x,y)
    (or "x=y")
Sum(x,y,z)
    (or "z=x+y")
```

- $\forall \mathrm{x} \exists \mathrm{y}$ Greater (x, y)
- $\forall x \exists y$ (Greater $(\mathrm{y}, \mathrm{x}) \wedge \operatorname{Prime}(\mathrm{y}))$
- $\forall x(\operatorname{Prime}(x) \rightarrow(E q u a l(x, 2) \vee 0 d d(x))$
- $\exists x \exists y(\operatorname{Sum}(x, 2, y) \wedge \operatorname{Prime}(x) \wedge \operatorname{Prime}(y))$

Prev Now

- $\forall x \exists y$ Greater (y, x) T

```
Domain: All integers
```

```
Even(x)
Odd(x)
Prime(x)
Greater(x,y)
    (or "x>y")
Equal(x,y)
    (or "x=y")
Sum(x,y,z)
    (or "z=x+y")
```

Domain of quantifiers is important!

- "Red cats like tofu"

```
Cat(x)
Red(x)
LikesTofu(x)
```

- "Some red cats don't like tofu"
- not every positive integer is prime
- some positive integer is not prime
- prime numbers do not exist
- every positive integer is not prime

$\forall x$ PurpleFruit(x)

Domain:
Fruit

PurpleFruit(x)

Which one is equal to $\neg \forall \mathrm{x}$ PurpleFruit(x)?

- $\exists x$ PurpleFruit(x)?
- $\exists \mathrm{x} \neg$ PurpleFruit(x$)$?

$$
\begin{array}{rl}
\neg \forall \mathrm{x} & \mathrm{P}(\mathrm{x})
\end{array} \equiv \exists \mathrm{x} \neg \mathrm{P}(\mathrm{x}),
$$

$$
\begin{array}{rl}
\neg \forall \mathrm{x} & \mathrm{P}(\mathrm{x})
\end{array} \equiv \exists \mathrm{x} \neg \mathrm{P}(\mathrm{x}),
$$

"There is no largest integer."

$$
\begin{array}{rrr}
& \neg \exists \mathrm{x} & \forall \mathrm{y} \\
& (\mathrm{x} \geq \mathrm{y}) \\
\equiv & \forall \mathrm{x} \neg \forall \mathrm{y} & (\mathrm{x} \geq \mathrm{y}) \\
\equiv & \forall \mathrm{x} & \exists \mathrm{y} \neg(\mathrm{x} \geq \mathrm{y}) \\
\equiv & \forall \mathrm{x} & \exists \mathrm{y} \\
\hline & (\mathrm{y}>\mathrm{x})
\end{array}
$$

"For every integer there is a larger integer."

example: $\quad \operatorname{Notlargest}(x) \equiv \exists y \operatorname{Greater}(y, x)$ $\equiv \exists \mathrm{z}$ Greater (z, x)

truth value:
doesn't depend on y or z "bound variables" does depend on x "free variable"
quantifiers only act on free variables of the formula they quantify

$$
\forall \mathrm{x}(\exists \mathrm{y}(\mathrm{P}(\mathrm{x}, \mathrm{y}) \rightarrow \forall \mathrm{x} \mathrm{Q}(\mathrm{y}, \mathrm{x})))
$$

$\exists x(P(x) \wedge Q(x)) \quad$ vs. $\quad \exists x P(x) \wedge \exists x Q(x)$

