
administrivia 

Homework #1 Due Today at 11:59pm 
 Your Gradescope account is created by your UW/CSE email address 

Homework #2 will be posted today and it is due next Friday 
 
 TA Office Hours 

TA Office hours Room 
Sam Castle Wed, 12:00-1:00 CSE 021 

Jiechen Chen Tue, 4:00-5:00 CSE 218 

Rebecca Leslie Mon, 8:30-9:30 CSE 218 

Evan McCarty Tue, 11:30-12:30 CSE 220 

Tim Oleskiw Tue, 3:00-4:00 CSE 218 

Spencer Peters Tue, 1:00-2:00 CSE 218 

Robert Weber Wed, 3:30-4:30 CSE 678 (except Oct 
21st at CSE 110) 

Ian Zhu Thu, 4:30-5:30 CSE 021 
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cse 311: foundations of computing 

Fall 2015 
Lecture 5: Canonical forms and predicate logic 



mapping truth tables to logic gates 

Given a truth table: 
1. Write the Boolean expression 
2. Minimize the Boolean expression 
3. Draw as gates 
4. Map to available gates 
 

A B C    F 

0 0 0    0 

0 0 1    0 

0 1 0    1 

0 1 1    1 

1 0 0    0 

1 0 1    1 

1 1 0    0 

1 1 1    1 F = A’BC’+A’BC+AB’C+ABC 

   = A’B(C’+C)+AC(B’+B) 

   = A’B+AC 
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canonical forms 

• Truth table is the unique signature of a Boolean function 

•  The same truth table can have many gate realizations 
– we’ve seen this already 
– depends on how good we are at Boolean simplification 

•  Canonical forms 
–  standard forms for a Boolean expression 
–  we all come up with the same expression 



sum-of-products canonical form 

• also known as Disjunctive Normal Form (DNF) 
• also known as minterm expansion 

A B C F F’ 
0 0 0 0 1 
0 0 1 1 0 
0 1 0 0 1 
0 1 1 1 0 
1 0 0 0 1 
1 0 1 1 0 
1 1 0 1 0 
1 1 1 1 0 

F = 

F =  001      011      101       110       111 
 

+ A’BC + AB’C + ABC’ + ABC A’B’C 



sum-of-products canonical form 

Product term (or minterm) 
– ANDed product of literals – input combination for which output is true 
– each variable appears exactly once, true or inverted (but not both) 

A B C minterms 

0 0 0  A’B’C’ 

0 0 1  A’B’C 

0 1 0  A’BC’ 

0 1 1  A’BC 

1 0 0  AB’C’ 

1 0 1  AB’C 

1 1 0  ABC’ 

1 1 1  ABC 

F in canonical form: 

 F(A, B, C) = A’B’C + A’BC + AB’C + ABC’ + ABC 

 

canonical form  minimal form 

 F(A, B, C) = A’B’C + A’BC + AB’C + ABC + ABC’  

= (A’B’ + A’B + AB’ + AB)C + ABC’ 

= ((A’ + A)(B’ + B))C + ABC’ 

= C + ABC’ 

= ABC’ + C 

  = AB + C 



product-of-sums canonical form 

• Also known as Conjunctive Normal Form (CNF) 
• Also known as maxterm expansion 

A B C F F’ 
0 0 0 0 1 
0 0 1 1 0 
0 1 0 0 1 
0 1 1 1 0 
1 0 0 0 1 
1 0 1 1 0 
1 1 0 1 0 
1 1 1 1 0 

F =       000              010              100 

F = (A + B + C) (A + B’ + C) (A’ + B + C) 



s-o-p, p-o-s, and de Morgan’s theorem 

Complement of function in sum-of-products form: 
– F’ = A’B’C’ + A’BC’ + AB’C’ 

 
Complement again and apply de Morgan’s and  
get the product-of-sums form: 

– (F’)’ = (A’B’C’ + A’BC’ + AB’C’)’ 

– F = (A + B + C) (A + B’ + C) (A’ + B + C) 
 
 



product-of-sums canonical form 

Sum term (or maxterm) 
– ORed sum of literals – input combination for which output is false 
– each variable appears exactly once, true or inverted (but not both) 

A B C maxterms 

0 0 0  A+B+C 

0 0 1  A+B+C’ 

0 1 0  A+B’+C 

0 1 1  A+B’+C’ 

1 0 0  A’+B+C 

1 0 1  A’+B+C’ 

1 1 0  A’+B’+C 

1 1 1  A’+B’+C’ 

F in canonical form: 

 F(A, B, C) = (A + B + C) (A + B’ + C) (A’ + B + C) 

 

canonical form  minimal form 

 F(A, B, C) = (A + B + C) (A + B’ + C) (A’ + B + C) 

= (A + B + C) (A + B’ + C) 

   (A + B + C) (A’ + B + C) 

= (A + C) (B + C) 



predicate logic 

• Propositional Logic  
–  If Pikachu doesn’t wear pants, then he flies on Bieber’s jet unless Taylor 

is feeling lonely. 

 
• Predicate Logic  

– If 𝑥, 𝑦, and 𝑧 are positive integers, then 𝑥3 + 𝑦3 ≠ 𝑧3. 



Predicate or Propositional Function 
– A function that returns a truth value, e.g., 

   

“x is a cat” 
“x is prime” 
“student x has taken course y” 
“x > y” 
“x + y = z” or Sum(x, y, z) 
“5 < x” 

Predicates will have variables or constants as arguments. 
 
 

predicate logic 



domain of discourse 

We must specify a “domain of discourse”, which is the possible 
things we’re talking about. 

 
“x is a cat” 
 (e.g., mammals) 
 
“x is prime” 
 (e.g., positive whole numbers) 
 
student x has taken course y” 
 (e.g., students and courses) 



quantifiers 

∀𝑥 𝑃(𝑥)  
P(x) is true for every x in the domain 
   read as “for all x, P of x” 

 
∃𝑥 𝑃 𝑥   

     There is an x in the domain for which P(x) is true 
    read as “there exists x, P of x” 



statements with quantifiers 

•  x Even(x) 
 

•  x Odd(x) 
 

•  x (Even(x)  Odd(x)) 
 

•  x (Even(x)  Odd(x)) 
 

•  x Greater(x+1, x) 
 

•  x (Even(x)  Prime(x)) 

Domain: 
Positive Integers 

Even(x) 
Odd(x) 
Prime(x) 
Greater(x,y) 
     (or  “x>y”) 
Equal(x,y) 
     (or  “x=y”) 
Sum(x,y,z) 
    (or “z=x+y”) 



statements with quantifiers 

• x y Greater (y, x) 

 

• x y Greater (x, y) 

 

• x y (Greater(y, x)  Prime(y)) 

 

• x (Prime(x)  (Equal(x, 2)  Odd(x)) 

 

• x y (Sum(x, 2, y)  Prime(x)  Prime(y))  

 

Even(x) 
Odd(x) 
Prime(x) 
Greater(x,y) 
     (or  “x>y”) 
Equal(x,y) 
     (or  “x=y”) 
Sum(x,y,z) 
    (or “z=x+y”) 

Domain: 
Positive Integers 



statements with quantifiers 

• x y Greater (y, x)  T 

 

• x y Greater (x, y)  F 

Domain: 
All integers 

Domain of quantifiers is important! 

Even(x) 
Odd(x) 
Prime(x) 
Greater(x,y) 
     (or  “x>y”) 
Equal(x,y) 
     (or  “x=y”) 
Sum(x,y,z) 
    (or “z=x+y”) 

Prev Now 



Cat(x) 
Red(x) 
LikesTofu(x) 

English to predicate logic 

• “Red cats like tofu”  
 
 
 
 
• “Some red cats don’t like tofu”  
 

 
 



negations of quantifiers 

• not every positive integer is prime 

 

• some positive integer is not prime 

 

• prime numbers do not exist 

 

• every positive integer is not prime 



negations of quantifiers 

x PurpleFruit(x) 
  
 
Which one is equal to x PurpleFruit(x)? 
 

• x PurpleFruit(x)? 
 
 

• x PurpleFruit(x)? 

Domain: 
Fruit 

PurpleFruit(x) 



de Morgan’s laws for quantifiers 

 x  P(x)     x P(x) 
 x   P(x)     x P(x)  



de Morgan’s laws for quantifiers 

        x      y    ( x ≥ y) 
     x  y     ( x ≥ y) 
     x      y  ( x ≥ y) 
     x      y      (y > x) 

“There is no largest integer.” 

“For every integer there is a larger integer.” 

 x  P(x)     x P(x) 
 x   P(x)     x P(x)  



scope of quantifiers 

 example:    Notlargest(x)      y Greater (y, x)                            
                                              z Greater (z, x) 
 

 truth value: 
    doesn’t depend on y or z  “bound variables” 
            does depend on x  “free variable” 

 
  quantifiers only act on free variables of the formula they 

quantify 
       x ( y (P(x, y)   x Q(y, x))) 

 



scope of quantifiers 

x  (P(x)  Q(x))       vs.      x P(x)  x Q(x) 

 
 


