
administrivia

Homework #1 Due Today at 11:59pm
 Your Gradescope account is created by your UW/CSE email address

Homework #2 will be posted today and it is due next Friday

 TA Office Hours

TA Office hours Room
Sam Castle Wed, 12:00-1:00 CSE 021

Jiechen Chen Tue, 4:00-5:00 CSE 218

Rebecca Leslie Mon, 8:30-9:30 CSE 218

Evan McCarty Tue, 11:30-12:30 CSE 220

Tim Oleskiw Tue, 3:00-4:00 CSE 218

Spencer Peters Tue, 1:00-2:00 CSE 218

Robert Weber Wed, 3:30-4:30 CSE 678 (except Oct
21st at CSE 110)

Ian Zhu Thu, 4:30-5:30 CSE 021

a 2-bit ripple-carry adder

A

Sum

Cout Cin

B

1-Bit Adder

A

B

Cin
Sum

A

B

A

Cin

B

Cin

Cout

A0 B0

Cout Cin

Sum0

0

A1 B1

Sum1

Cout Cin

A2 B2

Sum2

Cout Cin

cse 311: foundations of computing

Fall 2015
Lecture 5: Canonical forms and predicate logic

mapping truth tables to logic gates

Given a truth table:
1. Write the Boolean expression
2. Minimize the Boolean expression
3. Draw as gates
4. Map to available gates

A B C F

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1 F = A’BC’+A’BC+AB’C+ABC

 = A’B(C’+C)+AC(B’+B)

 = A’B+AC

notA

B

A

C

F F

notA

B

A

C

1

2

3

4

canonical forms

• Truth table is the unique signature of a Boolean function

• The same truth table can have many gate realizations
– we’ve seen this already
– depends on how good we are at Boolean simplification

• Canonical forms
– standard forms for a Boolean expression
– we all come up with the same expression

sum-of-products canonical form

• also known as Disjunctive Normal Form (DNF)
• also known as minterm expansion

A B C F F’
0 0 0 0 1
0 0 1 1 0
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 0

F =

F = 001 011 101 110 111

+ A’BC + AB’C + ABC’ + ABC A’B’C

sum-of-products canonical form

Product term (or minterm)
– ANDed product of literals – input combination for which output is true
– each variable appears exactly once, true or inverted (but not both)

A B C minterms

0 0 0 A’B’C’

0 0 1 A’B’C

0 1 0 A’BC’

0 1 1 A’BC

1 0 0 AB’C’

1 0 1 AB’C

1 1 0 ABC’

1 1 1 ABC

F in canonical form:

 F(A, B, C) = A’B’C + A’BC + AB’C + ABC’ + ABC

canonical form minimal form

 F(A, B, C) = A’B’C + A’BC + AB’C + ABC + ABC’

= (A’B’ + A’B + AB’ + AB)C + ABC’

= ((A’ + A)(B’ + B))C + ABC’

= C + ABC’

= ABC’ + C

 = AB + C

product-of-sums canonical form

• Also known as Conjunctive Normal Form (CNF)
• Also known as maxterm expansion

A B C F F’
0 0 0 0 1
0 0 1 1 0
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 0

F = 000 010 100

F = (A + B + C) (A + B’ + C) (A’ + B + C)

s-o-p, p-o-s, and de Morgan’s theorem

Complement of function in sum-of-products form:
– F’ = A’B’C’ + A’BC’ + AB’C’

Complement again and apply de Morgan’s and
get the product-of-sums form:

– (F’)’ = (A’B’C’ + A’BC’ + AB’C’)’

– F = (A + B + C) (A + B’ + C) (A’ + B + C)

product-of-sums canonical form

Sum term (or maxterm)
– ORed sum of literals – input combination for which output is false
– each variable appears exactly once, true or inverted (but not both)

A B C maxterms

0 0 0 A+B+C

0 0 1 A+B+C’

0 1 0 A+B’+C

0 1 1 A+B’+C’

1 0 0 A’+B+C

1 0 1 A’+B+C’

1 1 0 A’+B’+C

1 1 1 A’+B’+C’

F in canonical form:

 F(A, B, C) = (A + B + C) (A + B’ + C) (A’ + B + C)

canonical form minimal form

 F(A, B, C) = (A + B + C) (A + B’ + C) (A’ + B + C)

= (A + B + C) (A + B’ + C)

 (A + B + C) (A’ + B + C)

= (A + C) (B + C)

predicate logic

• Propositional Logic
– If Pikachu doesn’t wear pants, then he flies on Bieber’s jet unless Taylor

is feeling lonely.

• Predicate Logic

– If 𝑥, 𝑦, and 𝑧 are positive integers, then 𝑥3 + 𝑦3 ≠ 𝑧3.

Predicate or Propositional Function
– A function that returns a truth value, e.g.,

“x is a cat”
“x is prime”
“student x has taken course y”
“x > y”
“x + y = z” or Sum(x, y, z)
“5 < x”

Predicates will have variables or constants as arguments.

predicate logic

domain of discourse

We must specify a “domain of discourse”, which is the possible
things we’re talking about.

“x is a cat”
 (e.g., mammals)

“x is prime”
 (e.g., positive whole numbers)

student x has taken course y”
 (e.g., students and courses)

quantifiers

∀𝑥 𝑃(𝑥)
P(x) is true for every x in the domain
 read as “for all x, P of x”

∃𝑥 𝑃 𝑥

 There is an x in the domain for which P(x) is true
 read as “there exists x, P of x”

statements with quantifiers

• x Even(x)

• x Odd(x)

• x (Even(x) Odd(x))

• x (Even(x) Odd(x))

• x Greater(x+1, x)

• x (Even(x) Prime(x))

Domain:
Positive Integers

Even(x)
Odd(x)
Prime(x)
Greater(x,y)
 (or “x>y”)
Equal(x,y)
 (or “x=y”)
Sum(x,y,z)
 (or “z=x+y”)

statements with quantifiers

• x y Greater (y, x)

• x y Greater (x, y)

• x y (Greater(y, x) Prime(y))

• x (Prime(x) (Equal(x, 2) Odd(x))

• x y (Sum(x, 2, y) Prime(x) Prime(y))

Even(x)
Odd(x)
Prime(x)
Greater(x,y)
 (or “x>y”)
Equal(x,y)
 (or “x=y”)
Sum(x,y,z)
 (or “z=x+y”)

Domain:
Positive Integers

statements with quantifiers

• x y Greater (y, x) T

• x y Greater (x, y) F

Domain:
All integers

Domain of quantifiers is important!

Even(x)
Odd(x)
Prime(x)
Greater(x,y)
 (or “x>y”)
Equal(x,y)
 (or “x=y”)
Sum(x,y,z)
 (or “z=x+y”)

Prev Now

Cat(x)
Red(x)
LikesTofu(x)

English to predicate logic

• “Red cats like tofu”

• “Some red cats don’t like tofu”

negations of quantifiers

• not every positive integer is prime

• some positive integer is not prime

• prime numbers do not exist

• every positive integer is not prime

negations of quantifiers

x PurpleFruit(x)

Which one is equal to x PurpleFruit(x)?

• x PurpleFruit(x)?

• x PurpleFruit(x)?

Domain:
Fruit

PurpleFruit(x)

de Morgan’s laws for quantifiers

 x P(x) x P(x)
 x P(x) x P(x)

de Morgan’s laws for quantifiers

 x y (x ≥ y)
 x y (x ≥ y)
 x y (x ≥ y)
 x y (y > x)

“There is no largest integer.”

“For every integer there is a larger integer.”

 x P(x) x P(x)
 x P(x) x P(x)

scope of quantifiers

 example: Notlargest(x) y Greater (y, x)
 z Greater (z, x)

 truth value:
 doesn’t depend on y or z “bound variables”
 does depend on x “free variable”

 quantifiers only act on free variables of the formula they

quantify
 x (y (P(x, y) x Q(y, x)))

scope of quantifiers

x (P(x) Q(x)) vs. x P(x) x Q(x)

