administrivia

Homework #1 Due Today at 11:59pm

Your Gradescope account is created by your UN/CSE email address
Homework #2 will be posted today and it is due next Friday

TA Office Hours

TA Office hours Room
Sam Castle Wed, 12:00-1:00 CSE 021

Jiechen Chen Tue, 4:00-5:00 CSE 218
Rebecca Leslie Mon, 8:30-9:30 CSE 218

Evan McCarty Tue, 11:30-12:30 CSE 220
Tim Oleskiw Tue, 3:00-4:00 CSE 218
Spencer Peters Tue, 1:00-2:00 CSE 218

Robert Weber Wed, 3:30-4:30 CSE 678 (except Oct
21st at CSE 110)

lan Zhu Thu, 4:30-5:30 CSE 021

a 2-bitripple-carry adder

A, B, A, B,
S R
— Cin Cout > Cin Cout f—
' }
Sum, Sum,

Sum

cse 311: foundations of computing

Fall 2015
Lecture 5: Canonical forms and predicate logic

19

QUANTIFIEH

g

mapping truth tables to |ogic gates

Given a truth table: A B C|F
1. Write the Boolean expression 0 0 0}0
C .. i O O 110
2. Minimize the Boolean expression o 1 ol1
3. Draw as gates o 1 111
4. Map to available gates 1 0 0}O0
M 1 0 1|1
1 1 O0]0
F=ABC+ABC+AB'C+ABC 1 1 111
@l = AB(C’+C)+AC(B’+B)
= AB+AC
NOtAD—+ (») NOLAS—1

BD—r}‘
=D

CD— CE

?
T
1

canonical forms

* Truth table is the unique signature of a Boolean function

 The same truth table can have many gate realizations
— we've seen this already
— depends on how good we are at Boolean simplification

« Canonical forms
— standard forms for a Boolean expression
— we all come up with the same expression

sum-of-products canonical form

« also known as Disjunctive Normal Form (DNF)
* also known as minterm expansion

F= 001 011 101 110 111
F = ABC + ABC + AB'C + ABC' + ABC

HFRPRPRR,OOOOT

P, OORLREFL,OOm

OO OKFON

o\

OO~ OM
o o

o

sum—of—products canonical form

Product term (or minterm)
— ANDed product of literals — input combination for which output is true
— each variable appears exactly once, true or inverted (but not both)

A B C | minterms _ _
0o 0 o0 | ABC F in canonical form:
0 0 1 | ABC F(A, B,C) = AB'C + ABC + AB'C + ABC' + ABC
0 1 0 | ABC | B
o 1 1 ABC canonical form = minimal form
1 0 0 | ABC F(A, B,C) = AB'C + ABC + AB'C + ABC + ABC’
1 0o 1| ABc = (A'B' + AB + AB’ + AB)C + ABC'
1 1 0 | ABC = ((A" + A)(B' + B))C + ABC’
1 1 1 | ABC = C + ABC'
= ABC' + C

= AB + C

product-of-su ms canonical form

« Also known as Conjunctive Normal Form (CNF)
* Also known as maxterm expansion

F= 000 010 100
F=(A+B+C)(A+B"+C) (A+B+C()

HFRRFROOOOT™

PR, OORLREFL,OOIm

HFOROFROFON

OO oM
cocorpr\oHm

s-0-p, p-0-s, and de Morgan’s theorem

Complement of function in sum-of-products form:
- F = AB'C' + ABC' + AB'C’

Complement again and apply de Morgan's and
get the product-of-sums form:

~ (F) = (AB'C’ + ABC' + ABC")’
~-F=(A+B+C)(A+B +C)(A+B+0()

product-of-su ms canonical form

Sum term (or maxterm)
— ORed sum of literals — input combination for which output is false
— each variable appears exactly once, true or inverted (but not both)

A B C | maxterms F in canonical form:

0 0 0 | A+B+C F(A,B,C) =(A+B+C)(A+B +C)(A+B+C)
0O 0 1 A+B+C’

0 1 0 | A+B+C canonical form = minimal form

0 1 1 | A+B+C F(A,B,C) =(A+B+C)(A+B +C)(A+B+C)
1 0 O A'+B+C =(A+B+C)(A+B + 0O

1 0 1 | A+B+C (A+B+C)(A+B+C)

1 1 (1) A'+B'+C =(A+C)(B+C)

A'+B'+C’

predicate Iogic

Propositional Logic

— If Pikachu doesn't wear pants, then he flies on Bieber's jet unless Taylor
is feeling lonely.

Predicate Logic ~.

— If x, y, and z are positive integers, then x3 + y3 = z3. I ’)
QUANTIFIEH

predicate Iogic

Predicate or Propositional Function
— A function that returns a truth value, e.q.,

X 1s a cat”

“X Is prime”

“student x has taken course y”
" >y

“Xx+y=2"or Sum(x,y, z)

“b< X"

Predicates will have variables or constants as arguments.

domain of discourse

We must specify a “domain of discourse”, which is the possible
things we're talking about.

‘X 1s a cat”
(e.g., mammals)

‘X Is prime”
(e.g., positive whole numbers)

student x has taken course y”
(e.g., students and courses)

quantifiers

Vx P(x)
P(x) is true for every x in the domain
read as “for all x, P of x"

Ix P(x)
There is an x in the domain for which P(x) is true
read as “there exists x, P of x"

statements with quantifiers

Domain:
3x Even(x) Positive Integers

Even(x)
vx 0dd(x) 0dd(x)
Prime(x)
Greater(x,y)
vx (Even(x) v 0dd(x)) (or “x>y")
Equal(x,y)
(Or “X:y")
3x (Even(x) A 0dd(x)) Sum(xy,z)

(or “z=x+y")

Vx Greater(x+1, x)

3x (Even(x) A Prime(x))

statements with quantifiers

Domain:
Positive Integers

vx 3y Greater (y, x)

Even(x)
0dd(x)
Prime(x)
Greater(x,y)
(or “x>y")
vx 3y (Greater(y, X) A Prime(y)) eq(Jg:(f,)z/):y")
Sum(x,y,z)
(or “z=x+y")

vx 3y Greater (x, y)

vx (Prime(x) — (Equal(x, 2) v 0dd(x))

3x 3y (Sum(x, 2, y) A Prime(x) A Prime(y))

statements with quantifiers

Prev Now

Domain:
« Vx3yGreater(y,x) T All integers

Even(x)
0dd(x)
Prime(x)
Greater(x,y)

(or “x>y")
Equal(x,y)

(or “x=y)
Sum(x,y,z)

(or “z=x+y")

 Vx 3y Greater (x, y) F

Domain of quantifiers is important!

English to predicate logic

* “Red cats like tofu” 225(&))

LikesTofu(x)

« “Some red cats don't like tofu”

negations of quantifiers

not every positive integer IS prime

some positive integer Is not prime

prime numbers do not exist

every positive integer Is not prime

negations of quantifiers

Vx PurpleFruit(x) Domain:

Fruit

PurpleFruit(x)

Which one is equal to —\Vx PurpleFruit(x)?

« 3x PurpleFruit(x)?

 3x —PurpleFruit(x)?

de Morgan's laws for quantifiers

—Vx P(x) = dx —=P(x)
—dx P(x) = Vx —P(x)

de I\/\organ's laws for quantifiers

—Vx P(x) = dx —=P(x)
—dx P(x) = Vx —P(x)

“There 1s no largest integer ’

—3X y (xzy)
= vXﬁVy (x>y)
= Vx dy-(xzy)
= Vx dy (y>x

“For every Integer there is a larger integer.”

scope of quantifiers

example: Notlargest(x)

3y Greater (y, X)
3 z Greater (z, x)

truth value:

doesn't depend ony or z “bound variables”
does depend on x “free variable”

quantifiers only act on free variables of the formula they
quantify

vx @y Pk y) - v xQ(y, x)

scope of quantifiers

Ix (PX) AQ(x)) vs. 3IxP(x) A3IxQ(x)

