cse 311: foundations of computing

Fall 2015

Lecture 5: Canonical forms and predicate logic

Homework #1 Due Today at 11:59pm

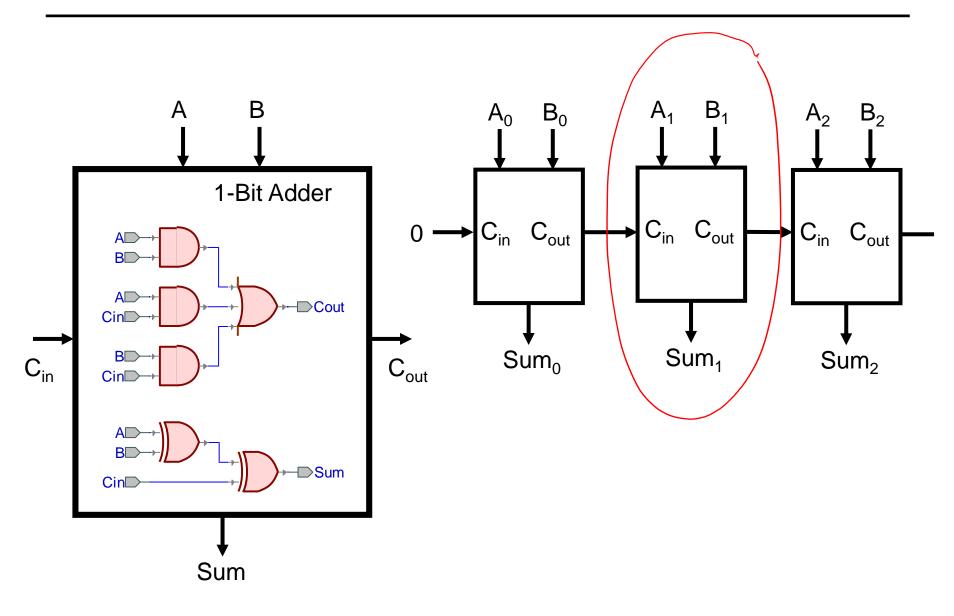
Your Gradescope login is your UW or CSE email address

Homework #2 will be posted today and it is due next Friday

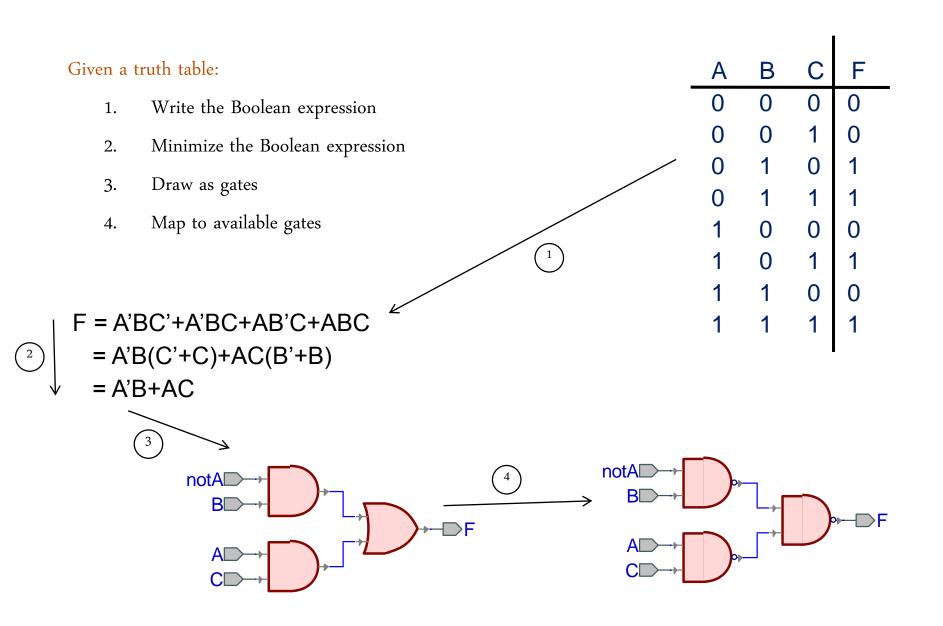
TA Office Hours

TA	Office hours	Room
Sam Castle	Wed, 12:00-1:00	CSE 021
Jiechen Chen	Tue, 4:00-5:00	CSE 218
Rebecca Leslie	Mon, 8:30-9:30	CSE 218
Evan McCarty	Tue, 11:30-12:30	CSE 220
Tim Oleskiw	Tue, 3:00-4:00	CSE 218
Spencer Peters	Tue, 1:00-2:00	CSE 218
Robert Weber	Wed, 3:30-4:30	CSE 678 (except Oct 21st at
		CSE 110)
Ian Zhu	Thu, 4:30-5:30	CSE 021

a 3-bit ripple-carry adder



mapping truth tables to logic gates

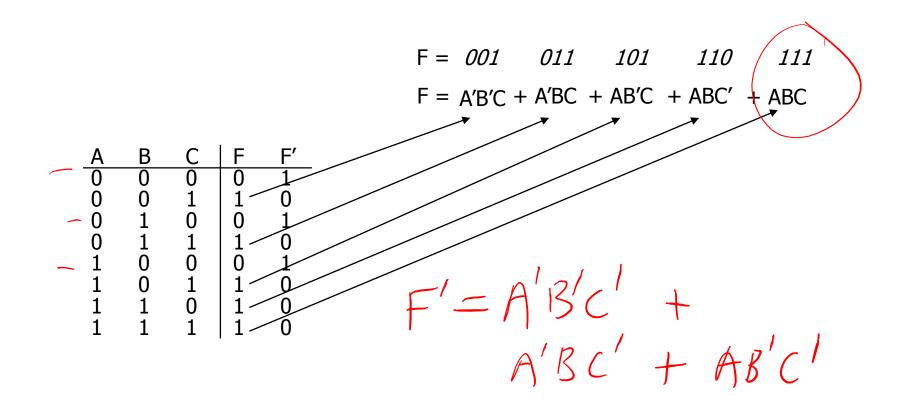


- Truth table is the unique signature of a Boolean function
- The same truth table can have many gate realizations
 - we've seen this already
 - depends on how good we are at Boolean simplification

• Canonical forms

- standard forms for a Boolean expression
- we all come up with the same expression

- also known as Disjunctive Normal Form (DNF)
- also known as minterm expansion

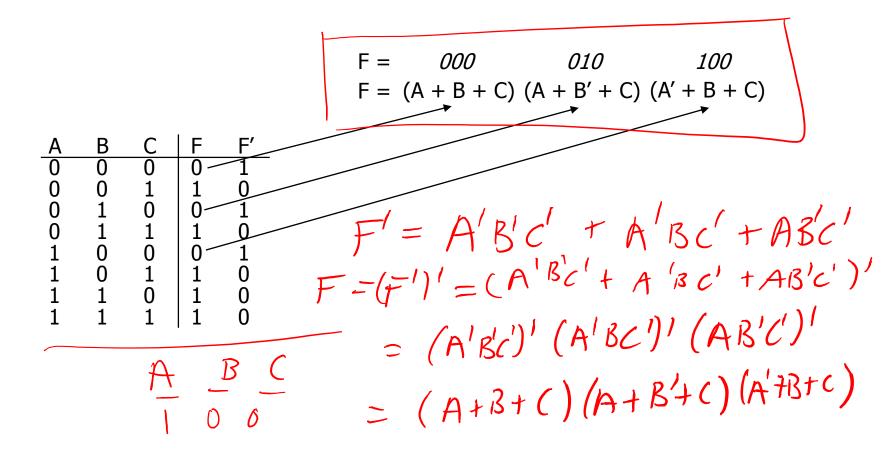


Product term (or minterm)

- ANDed product of literals input combination for which output is true
- each variable appears exactly once, true or inverted (but not both)

Α	В	С	minterms	
0	0	0	A'B'C'	F in canonical form:
0	0	1	A'B'C	F(A, B, C) = A'B'C + A'BC + AB'C + ABC' + ABC
0	1	0	A'BC'	
0	1	1	A'BC	canonical form ≠ minimal form
-	~	-	_	F(A, B, C) = A'B'C + A'BC + AB'C + ABC + ABC'
T	0	0	AB'C'	
1	0	1	AB'C	= (A'B' + A'B + AB' + AB)C + ABC'
1	1	0	ABC'	= ((A' + A)(B' + B))C + ABC'
1	1	1	ABC	= C + ABC'
Т	T	T		= ABC' + C
				= AB + C

- Also known as Conjunctive Normal Form (CNF)
- Also known as maxterm expansion



Complement of function in sum-of-products form:

-F' = A'B'C' + A'BC' + AB'C'

Complement again and apply de Morgan's and get the product-of-sums form:

$$- (F')' = (A'B'C' + A'BC' + AB'C')' - F = (A + B + C) (A + B' + C) (A' + B + C) P - 0 - S F = A_e - Mayan (S - 0 - P F') P - 0 - S F = A_e - Mayan (S -$$

Sum term (or maxterm)

- ORed sum of literals input combination for which output is false
- each variable appears exactly once

Α	В	С	maxterms	F in canonical form:
0	0	0	A+B+C	F(A, B, C) = (A + B + C) (A + B' + C) (A' + B + C)
0	0	1	A+B+C'	
0	1	0	A+B'+C	canonical form ≠ minimal form
0	1	1	A+B'+C'	F(A, B, C) = (A + B + C) (A + B' + C) (A' + B + C)
1	0	0	A'+B+C	= (A + B + C) (A + B' + C)
1	0	1	A'+B+C'	(A + B + C) (A' + B + C)
1	1	0	A'+B'+C	= (A + C) (B + C)
1	1	1	A'+B'+C'	

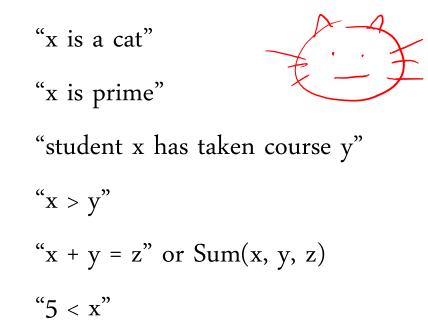
• Propositional Logic

- If Pikachu doesn't wear pants, then he flies on Bieber's jet unless Taylor is feeling lonely.

• Predicate Logic
- If x, y, and Z are positive integers, then
$$x^3 + y^3 \neq z^3$$
! $y_1 \neq z^3$!

Predicate or Propositional Function

- A function that returns a truth value, e.g.,



Predicates will have variables or constants as arguments.

We must specify a "domain of discourse", which is the possible things we're talking about.

"x is a cat" (e.g., mammals)

"x is prime" (e.g., positive whole numbers)

"student x has taken course y" (e.g., students and courses) $\forall x P(x)$

ď

P(x) is true for every x in the domain

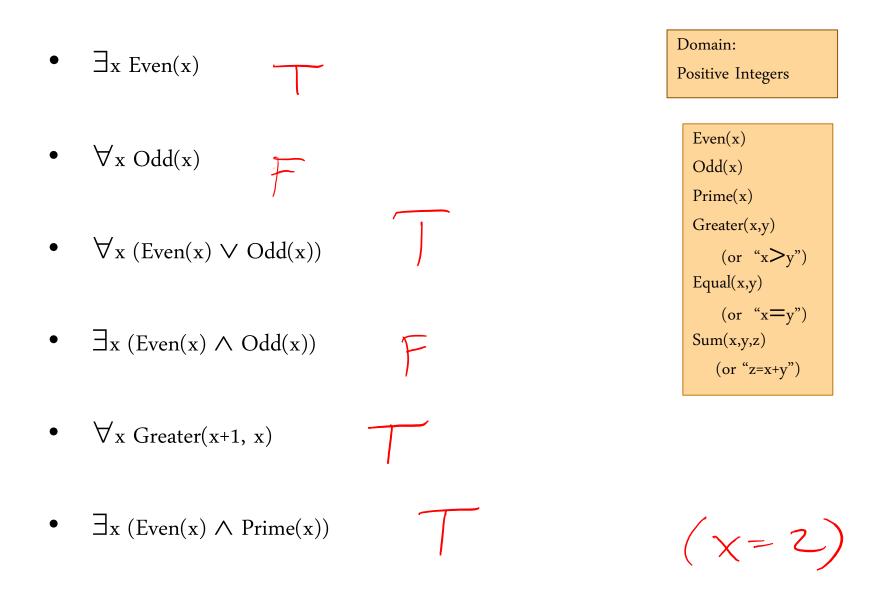
read as "for all x, P of x"

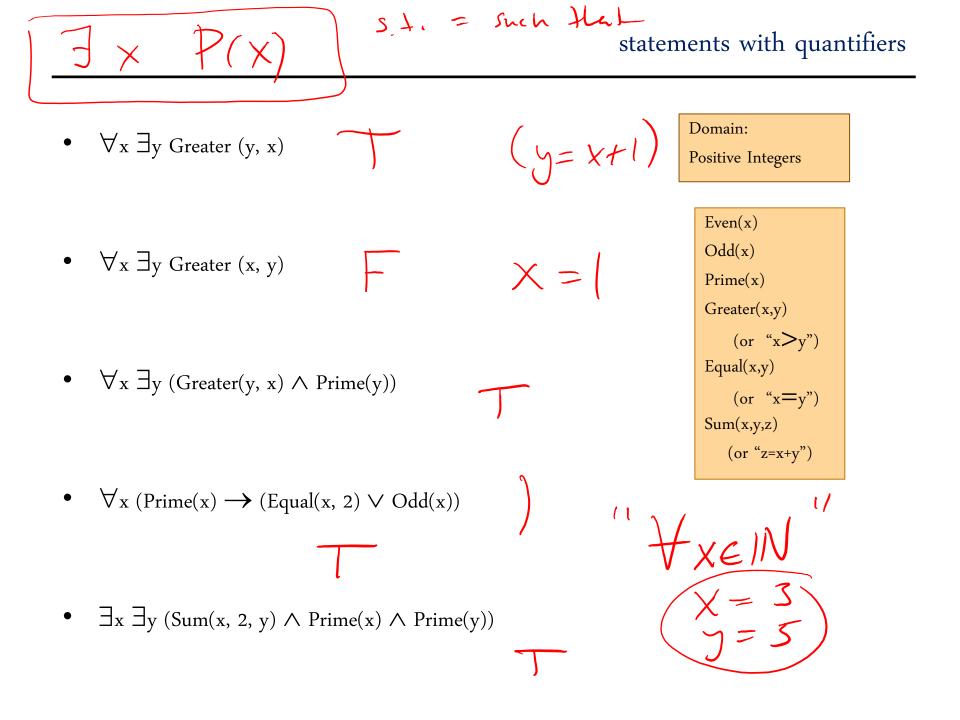
 $\exists x P(x)$

There is an x in the domain for which P(x) is true

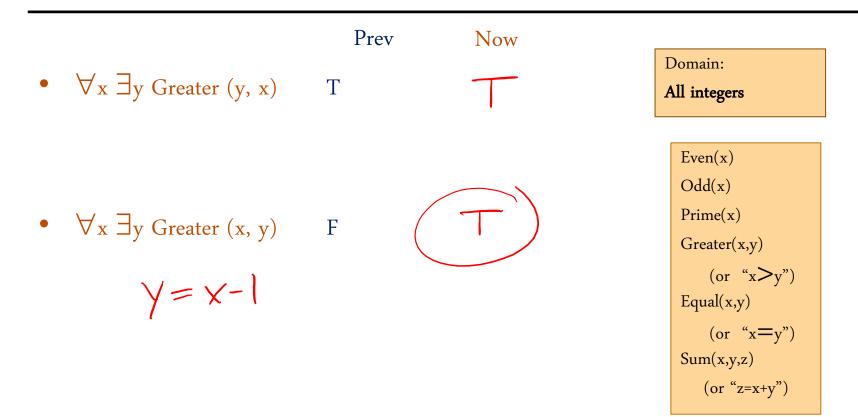
read as "there exists x, P of x"

statements with quantifiers





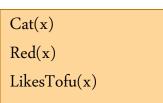
statements with quantifiers



Domain of quantifiers is important!

ドットミー

"Red cats like tofu"



HX (Cat(x) ~ Red(x) ~ LikesTofu(X)) HX ((Ked(x) ~ Cat(x)) -> LikesTofu(X))

• "Some red cats don't like tofu"

JX (Cat(X) ~ Red(X) ~ ~ LikesTofu(X)) wrong JX ((Cat(X) ~ Red(X)) -> 7 Likestofu(X)) All cats like to for and Here is and ad a green there is and ad a green

JX P(X)

negations of quantifiers

not every positive integer is prime

 $\exists X \neg Prime(X) = \neg (\forall X Prime(X))$

• some positive integer is not prime

Jonain pos. Intolers Prine (X)

• prime numbers do not exist

• every positive integer is not prime

$\forall x$	Purp	leFruit(x)
V A	I uipi	ier rund A	/

Domain:	
Fruit	

PurpleFruit(x)

Which one is equal to $\neg \forall x \text{ PurpleFruit}(x)$?

• $\exists x PurpleFruit(x)?$

• $\exists x \neg PurpleFruit(x)$?

de Morgan's laws for quantifiers

$$\neg \forall x P(x) \equiv \exists x \neg P(x) \neg \exists x P(x) \equiv \forall x \neg P(x) \neg \forall x P(x) \equiv \exists x \neg P(x) \forall x P(x) = (P(x_1) \land P(x_2) \land P(x_3) \land \cdots) (X;) Larges over the domain \forall x P(x) = \gamma (P(x_1) \land \cdots) = \gamma P(x_1) \lor \gamma P(x_2) \lor \cdots$$

de Morgan's laws for quantifiers

$$\begin{vmatrix} \neg \forall x \ P(x) \\ \neg \exists x \ P(x) \end{vmatrix} \equiv \exists x \neg P(x)$$
$$\neg \exists x \ P(x) \equiv \forall x \neg P(x)$$

"There is no largest integer."

$$\neg \exists x \quad \forall y \quad (x \ge y)$$
$$\equiv \quad \forall x \neg \forall y \quad (x \ge y)$$
$$\equiv \quad \forall x \quad \exists y \neg (x \ge y)$$
$$\equiv \quad \forall x \quad \exists y \neg (x \ge y)$$
$$\equiv \quad \forall x \quad \exists y \quad (y > x)$$

"For every integer there is a larger integer."