administrivia

Homework #1 Due Today at 11:59pm

Your Gradescope account is created by your UN/CSE email address
Homework #2 will be posted today and it is due next Friday

TA Office Hours

TA Office hours Room
Sam Castle Wed, 12:00-1:00 CSE 021

Jiechen Chen Tue, 4:00-5:00 CSE 218
Rebecca Leslie Mon, 8:30-9:30 CSE 218

Evan McCarty Tue, 11:30-12:30 CSE 220
Tim Oleskiw Tue, 3:00-4:00 CSE 218
Spencer Peters Tue, 1:00-2:00 CSE 218

Robert Weber Wed, 3:30-4:30 CSE 678 (except Oct
21st at CSE 110)

lan Zhu Thu, 4:30-5:30 CSE 021

a 2-bitripple-carry adder

A, B, A, B,
S R
— Cin Cout > Cin Cout f—
' }
Sum, Sum,

Sum

cse 311: foundations of computing

Fall 2015
Lecture 5: Canonical forms and predicate logic

19

QUANTIFIEH

g

mapping truth tables to |ogic gates

Given a truth table: A B C|F
1. Write the Boolean expression 0 0 0}0
C .. i O O 110
2. Minimize the Boolean expression o 1 ol1
3. Draw as gates o 1 111
4. Map to available gates 1 0 0}O0
M 1 0 1|1
1 1 O0]0
F=ABC+ABC+AB'C+ABC 1 1 111
@l = AB(C’+C)+AC(B’+B)
= AB+AC
NOtAD—+ (») NOLAS—1

BD—r}‘
=D

CD— CE

?
T
1

canonical forms

* Truth table is the unique signature of a Boolean function

 The same truth table can have many gate realizations
— we've seen this already
— depends on how good we are at Boolean simplification

« Canonical forms
— standard forms for a Boolean expression
— we all come up with the same expression

sum-of-products canonical form

« also known as Disjunctive Normal Form (DNF)
* also known as minterm expansion

F= 001 011 101 110 111

F @ ABC + AB'C + ABC' + ABC

HFRPRPRR,OOOOT

P, OORLREFL,OOm

OO OKFON

OO~ OM
o

sum—of—products canonical form

Product term (or minterm)
— ANDed product of literals — input combination for which output is true
— each variable appears exactly once, true or inverted (but not both)

A B C | minterms _ _
0o 0 o0 | ABC F in canonical form:
0 0 1 | ABC F(A, B,C) = AB'C + ABC + AB'C + ABC' + ABC
0 1 0 | ABC | B
o 1 1 ABC canonical form = minimal form
1 0 0 | ABC F(A, B,C) = AB'C + ABC + AB'C + ABC + ABC’
1 0o 1| ABc = (A'B' + AB + AB’ + AB)C + ABC'
1 1 0 | ABC = ((A" + A)(B' + B))C + ABC’
1 1 1 | ABC = C + ABC'
= ABC' + C

= AB + C

product-of-su ms canonical form

« Also known as Conjunctive Normal Form (CNF)
* Also known as maxterm expansion

F= 000 010 100
F=(A+B+C)(A+B"+C) (A+B+C()

HFRRFROOOOT™

PR, OORLREFL,OOIm

HFOROFROFON

OO oM
cocorpr\oHm

s-0-p, p-0-s, and de Morgan’s theorem

Complement of function in sum-of-products form:

— F' = ABC' + ABC' + ABC A 8C FF

5 C ©° 0 1

Complement again and apply de Morgan's and | ©
get the product-of-sums form: o | o 9
— () = (AB'C' + ABC' + AB'C')’ L) s
—F=(A+B+C)(A+B’+C)(A’+BJ|-C)D > ’ |
S

!

product-of-su ms canonical form

Sum term (or maxterm)
— ORed sum of literals — input combination for which output is false
— each variable appears exactly once, true or inverted (but not both)

A B C | maxterms f F in canonical form:

0 0 0 | A+B+C | F(A B,C) =(A+B+C) (/57+ B’ 5 C) (Ay+ B+ Q)
0 0 1 | A+B+C gnfl*@*_ C g R'.C

0 1 0 A+B'+C can al form = mmn‘gal orm

0 1 1 | A+B+C F(A,B,C) =(A+B+C)(A+B +C)(A+B+C)
1 0 0 | A+B+C | =(A+B+C)(A+B +C)

1 0 1 A'+B+C’ ' (A+B+C)(A+B+ 0

1 1 (1) A'+B'+C \ =(A+C)(B+C)

A'+B'+C’ (o)

predicate Iogic

Propositional Logic

— If Pikachu doesn't wear pants, then he flies on Bieber's jet unless Taylor
is feeling lonely.

Predicate Logic ~.

— If x, y, and z are positive integers, then x3 + y3 = z3. I ’)
QUANTIFIEH

predicate Iogic

Predicate or Propositional Function
— A function that returns a truth value, e.q.,

X 1s a cat”

“X Is prime”

“student x has taken course y”
" >y

“Xx+y=2"or Sum(x,y, z)

“b< X"

Predicates will have variables or constants as arguments.

domain of discourse

We must specify a “domain of discourse”, which is the possible
things we're talking about.

‘X 1s a cat”
(e.g., mammals)

‘X Is prime”
(e.g., positive whole numbers)

student x has taken course y”
(e.g., students and courses)

quantifiers

Vx P(x)
P(x) is true for every x in the domain
read as “for all x, P of x"

Ix P(x)
There is an x in the domain for which P(x) is true
read as “there exists x, P of x"

statements with quantifiers

2

— Domain:
Ix Even(x) | ngilgilg Integers
2
vx0ddx) F o
Prime(x)
— Greater(x,y)
vx (Even(x) v 0dd(x)) | (or “x>y")
Equal(x,y)
2 (or “x=y")
3x (Even(x) A 0dd(x)) [: Sum(xy,z)
(or “z=x+y")
Vx Greater(x+1, x) \
2 —

3x (Even(x) A Prime(x)) ‘

statements with quantiﬁers

9 10

vx 3y Greater (y,x) |

Domain:
Positive Integers

Even(x)

Vx Jy Greater (X, y) F 32%?@)

X = Greater(x,y)
(or “x>Yy")

vx 3y (Greater(y, x) A Prime(y)) T quzg:()ff)zyn)

K= 20 >L 1% Sum(x,y,z)

(or “z=x+y")

vx (Prime(x) — (Equal(x, 2) v 0dd(x)) |

#

3x 3y (Sum(x, 2, y) A Prime(x) A Prime(y))
R=2 f‘}

statements with quantifiers

Prev Now _
Domain:

« Vx3yGreater(y,x) T T All integers
Even(x)
0dd(x)

. _T Prime(x)

vx 3y Greater (X, y) F Greater(xy)
— (or “x>y")
pos it Equal(x,y)
(or “x=y")
Sum(x,y,z)
(or “z=x+y")

Domain of quantifiers is important!

English to predicate logic

« “Red cats like tofu”

Cat(x)
Red(x)
LikesTofu(x)

Wi (10400 Aedx)) > L)) Do,

« “Some red cats don't like tofu”

I (o A Redn) 6 ~ LeTohl 0

@

AN

negations of quantifiers

not every positive integer IS prime
T Vx prim (O

some positive integer Is not prime
3 X ~ P)’\'M()()
prime numbers do not exist

1 BX P"{m, (/)()

every positive integer Is not prime
\f x AP ()

D oM.

Rs Int

negations of quantifiers

' Domain:
Vx PurpleFruit(x) Domain
E\'j ffn(*' S P""P’c\ PurpleFruit(x)

Which one is equal to —\Vx PurpleFruit(x)?

« 3x PurpleFruit(x)?

TLM« R C Pw{)!& fW’\\' -

 3x —PurpleFruit(x)?

Thew 3 ¢t Lt ons “g""“'"
v’\/\\°l" 'S wmet ?V\(M,\ ’

de Morgan's laws for quantifiers

—Vx P(x) = dx —=P(x)
—dx P(x) = Vx —P(x)

de I\/\organ's laws for quantifiers

—Vx P(x) = dx —=P(x)
—dx P(x) = Vx —P(x)

“There 1s no largest integer ’

—3X y (xzy)
= vXﬁVy (x>y)
= Vx dy-(xzy)
= Vx dy (y>x

“For every Integer there is a larger integer.”

scope of quantifiers

example: Notlargest(x)

3y Greater (y, X)
3 z Greater (z, x)

truth value:

doesn't depend ony or z “bound variables”
does depend on x “free variable”

quantifiers only act on free variables of the formula they
quantify

vx @y Pk y) - v xQ(y, x)

scope of quantifiers

Ix (PX) AQ(x)) vs. 3IxP(x) A3IxQ(x)

