Course web: http://www.cs.washington.edu/311
Office hours:
TA Section:
Call me:
Don't:
Homework \#1:

Extra credit: \quad Not required to get a 4.0.
Counts separately.
In total, may raise grade by ~ 0.1
Don't be shy (raise your hand in the back)!
Do space out your participation.
If you are not CSE yet, please do well!

p	$\neg p$	
T	F	
F	T	
NOT		

p	q	$p \wedge q$
T	T	T
T	F	F
F	T	F
F	F	F

AND

p	q	$p \vee q$
T	T	T
T	F	T
F	T	T
F	F	F

OR

p	q	$p \oplus q$	
T	T	F	
T	F	T	
F	T	T	
F	F	F	
XOR			

- "If p, then q " is a promise:
- Whenever p is true, then q is true
- Ask "has the promise been broken"

p	q	$p \rightarrow q$
F	F	T
F	T	T
T	F	F
T	T	T

If it's raining, then I have my umbrella.

- Implication:

$$
p \rightarrow q
$$

- Converse: $q \rightarrow p$
- Contrapositive:
- Inverse:

$$
\neg q \rightarrow \neg p
$$

$$
\neg p \rightarrow \neg q
$$

How do these relate to each other?
How to see this?

- p iff q
- p is equivalent to q
- p implies q and q implies p

A fruit is an apple only if it is either red or green and a fruit is not red and green.

p : "Fruit is an apple"
q : "Fruit is red"
r : "Fruit is green"

A fruit is an apple only if it is either red or green and a fruit is not red

 and green.
(FApple only if (FGreen xor FRed)) and (not (FGreen and FRed))

```
        \downarrow
(FApple }->(\mathrm{ FGreen }\bigoplus\mathrm{ FRed ) ) }\wedge(\neg(\mathrm{ FGreen }\wedge\mathrm{ Fred )}
p:FApple
q: FGreen
r:FRed
```

Fruit Sentence with a truth table

\boldsymbol{p}	\boldsymbol{q}	\boldsymbol{r}	$\boldsymbol{q} \oplus \boldsymbol{r}$	$\boldsymbol{p} \rightarrow(\boldsymbol{q} \oplus \mathbf{r})$	$\boldsymbol{q} \wedge \boldsymbol{r}$	$\neg(\boldsymbol{q} \wedge \boldsymbol{r})$	$(\boldsymbol{p} \rightarrow(\boldsymbol{q} \oplus \mathbf{r})) \wedge(\neg(\boldsymbol{q} \wedge \boldsymbol{r}))$
\mathbf{T}	\mathbf{T}	\mathbf{T}					
\mathbf{T}	\mathbf{T}	\mathbf{F}					
\mathbf{T}	\mathbf{F}	\mathbf{T}					
\mathbf{T}	\mathbf{F}	\mathbf{F}					
\mathbf{F}	\mathbf{T}	\mathbf{T}					
\mathbf{F}	\mathbf{T}	\mathbf{F}					
\mathbf{F}	\mathbf{F}	\mathbf{T}					
\mathbf{F}	\mathbf{F}	\mathbf{F}					

Spring 2015

Lecture 2: Digital circuits \& more logic

Computing with logic

- T corresponds to 1 or "high" voltage
- F corresponds to 0 or "low" voltage

Gates:

- Take inputs and produce outputs (functions)
- Several kinds of gates
- Correspond to propositional connectives

AND Connective vs. AND Gate

$\boldsymbol{p} \wedge \boldsymbol{q}$		
\boldsymbol{p}	\boldsymbol{q}	$\boldsymbol{p} \wedge \boldsymbol{q}$
T	T	T
T	F	F
F	T	F
F	F	F

${ }_{q}^{p-A N D-O U T ~}$		
p	q	OUT
1	1	1
1	0	0
0	1	0
0	0	0

"block looks like D of AND"

OR Connective vs. OR Gate

$\boldsymbol{p} \vee \boldsymbol{q}$		
\boldsymbol{p}	\boldsymbol{q}	$\boldsymbol{p} \vee \boldsymbol{q}$
T	T	T
T	F	T
F	T	T
F	F	F

${ }_{q}^{p-}$ OR -out		
p	q	OUT
1	1	1
1	0	1
0	1	1
0	0	0

"arrowhead block looks like v"

NOT Connective
vS.
NOT Gate (Also called inverter)
p-Norpo-out

p	OUT
1	0
0	1

You can write gates using blobs instead of shapes.

Values get sent along wires connecting gates

Wires can send one value to multiple gates!

Terminology: A compound proposition is a...

- Tautology if it is always true
- Contradiction if it is always false
- Contingency if it can be either true or false

Classify!

$p \vee \neg p$
$p \oplus p$
$(p \rightarrow q) \wedge p$
$(p \wedge q) \vee(p \wedge \neg q) \vee(\neg p \wedge q) \vee(\neg p \wedge \neg q)$

Terminology: A compound proposition is a...

- Tautology if it is always true
- Contradiction if it is always false
- Contingency if it can be either true or false

Classify!

$((p \wedge q \wedge r) \vee(\neg p \wedge q \wedge \neg r)) \wedge((p \vee q \vee \neg s) \vee(p \wedge q \wedge s))$

A and B are logically equivalent if and only if
$A \leftrightarrow B$ is a tautology
i.e. A and B have the same truth table

The notation $A \equiv B$ denotes A and B are logically equivalent.

Example: $p \equiv \neg \neg p$

\boldsymbol{p}	$\neg \boldsymbol{p}$	$\neg \neg \boldsymbol{p}$	$\boldsymbol{p} \leftrightarrow \neg \neg \boldsymbol{p}$

$A \equiv B$ says that two propositions A and B always mean the same thing.
$A \leftrightarrow B$ is a single proposition that may be true or false depending on the truth values of the variables in A and B.
but $A \equiv B$ and $(A \leftrightarrow B) \equiv \mathrm{T}$ have the same meaning.

Note: Why write $A \equiv B$ and not $A=B$?
[We use $A=B$ to say that A and B are precisely the same proposition (same sequence of symbols)]

My code compiles or there is a bug.
[let's negate it]

Write NAND using NOT and OR:

Verify: $\neg(p \wedge q) \equiv(\neg p \vee \neg q)$

\boldsymbol{p}	\boldsymbol{q}	$\neg \boldsymbol{p}$	$\neg \boldsymbol{q}$	$\neg \boldsymbol{p} \vee \neg \boldsymbol{q}$	$\boldsymbol{p} \wedge \boldsymbol{q}$	$\neg(\boldsymbol{p} \wedge \boldsymbol{q})$	$\neg(\boldsymbol{p} \wedge \boldsymbol{q}) \leftrightarrow(\neg \boldsymbol{p} \vee \neg \boldsymbol{q})$
T	T						
T	F						
F	T						
F	F						

$$
\begin{aligned}
& \neg(p \wedge q) \equiv \neg p \vee \neg q \\
& \neg(p \vee q) \equiv \neg p \wedge \neg q
\end{aligned}
$$

```
if ! (front ! = null \&\& value > front.data)
    front = new ListNode(value, front);
else \{
    ListNode current = front;
    while ! (current.next == null || current.next.data >= value)
        current = current.next;
    current.next = new ListNode(value, current.next);
\}
```

$$
(p \rightarrow q) \equiv(\neg p \vee q)
$$

\boldsymbol{p}	\boldsymbol{q}	$\boldsymbol{p} \rightarrow \boldsymbol{q}$	$\neg \boldsymbol{p}$	$\neg \boldsymbol{p} \vee \boldsymbol{q}$	$(\boldsymbol{p} \rightarrow \boldsymbol{q}) \leftrightarrow(\neg \boldsymbol{p} \vee \boldsymbol{q})$
T	T				
T	F				
F	T				
F	F				

Describe an algorithm for computing if two logical expressions/circuits are equivalent.

What is the run time of the algorithm?

- $x+y=y+x$
(commutativity)
- $x \cdot(y+z)=x \cdot y+x \cdot z \quad$ (distributivity)
- $(x+y)+z=x+(y+z) \quad$ (associativity)

Logic has similar algebraic properties

- $x+y=y+x$

$$
\begin{aligned}
& -p \vee q \equiv q \vee p \\
& -p \wedge q \equiv q \wedge p
\end{aligned}
$$

- $x \cdot(y+z)=x \cdot y+x \cdot z$

$$
\begin{aligned}
& -p \wedge(q \vee r) \equiv(p \wedge q) \vee(p \wedge r) \\
& -p \vee(q \wedge r) \equiv(p \vee q) \wedge(p \vee r)
\end{aligned}
$$

- $(x+y)+z=x+(y+z)$
$-(p \vee q) \vee r \equiv p \vee(q \vee r)$
$-(p \wedge q) \wedge r \equiv p \wedge(q \wedge r)$
(commutativity)
(distributivity)
(associativity)
- Identity
$-p \wedge \mathrm{~T} \equiv p$
$-p \vee \mathrm{~F} \equiv p$
- Domination

$$
\begin{aligned}
& -p \vee \mathrm{~T} \equiv \mathrm{~T} \\
& -p \wedge \mathrm{~F} \equiv \mathrm{~F}
\end{aligned}
$$

- Idempotent
- $p \vee p \equiv p$
$-p \wedge p \equiv p$
- Commutative
- $p \vee q \equiv q \vee p$
$-p \wedge q \equiv q \wedge p$

You will always get this list.

- Associative

$$
\begin{aligned}
& (p \vee q) \vee r \equiv p \vee(q \vee r) \\
& (p \wedge q) \wedge r \equiv p \wedge(q \wedge r)
\end{aligned}
$$

- Distributive

$$
\begin{aligned}
& p \wedge(q \vee r) \equiv(p \wedge q) \vee(p \wedge r) \\
& p \vee(q \wedge r) \equiv(p \vee q) \wedge(p \vee r)
\end{aligned}
$$

- Absorption

$$
\begin{aligned}
& p \vee(p \wedge q) \equiv p \\
& p \wedge(p \vee q) \equiv p
\end{aligned}
$$

- Negation

$$
\begin{aligned}
& p \vee \neg p \equiv \mathrm{~T} \\
& p \wedge \neg p \equiv \mathrm{~F}
\end{aligned}
$$

