administrivia

Course web: http://www.cs.washington.edu/311
Office hours: 12 office hours each week
Me/James: MW 10:30-11:30/2:30-3:30pm or by appointment
TA Section: Start next week
Call me: Shayan
Don't: Actually call me.

Homework #1: Will be posted today, due next Friday by midnight (Oct 9t)
Gradescope! (stay tuned)

Extra credit: Not required to get a 4.0.
Counts separately.
In total, may raise grade by ~0.1

Don't be shy (raise your hand in the back)!
Do space out your participation.

If you are not CSE yet, please do well!

|ogica| connectives

pA~g

NOT

AND

pOq

pPvq

XOR

OR

P—4q

« “If p, then q" is a promise: ’; ‘F’ d ?q
* Whenever p is true, then g is true = -
 Ask “has the promise been broken” T | F =

T|T | T

If it'’s raining, then | have my umbrella.

__/_/

related implications

Implication: p—q
Converse: qg—p F)
Contrapositive: —q — —p

Inverse: —p —> —(

How do these relate to each other?

How to see this? |
I? ‘(V“b) g \/‘WNL VU Ww- JWIIM/-\

g 21 h v Oy, AJ’L"‘ UG
T et e g e (cortor Posi)

\D g)P < 4d

. piffg { n@ * 9 P_ﬂj_» Pe g

* pisequivalentto g
« pimplies g and g implies p

P q p<>{q
T T] T
T | £ £
T ¢
Tl =~

Let’s think about fruits

A fruit is an apple only if it is either red or green and a fruit is not
red and green.

]

q .
r.

“Fruit is an apple”
“Fruit is red”
“Fruit is green”

Let’s think about fruits

(A fruit is an apple only if it is either red or greer)and a fruit is not red
and green.

(FApple only if (FGreen xor FRed)) and (not (FGreen and FRed))

(FApple = (FGreen @ FRed)) A (= (FGreen A Fred))
p . FApple l

g : FGreen
r . FRed

(P> (4o N)/\(ﬂ(c\/\w))

Fruit Sentence with a truth table

qdr

p—-(@q®Dr)

qAT

—|(q AN T)

- @Dr)A(—(gAT))

M| -]

MM =A|=A ||| |-|a

M=M= |[m|= |||~

cse 311: foundations of computing

Spring 2015
Lecture 2: Digital circuits & more logic

AND OVER THERE WE HAVE THE LABYRINTH GUARDS.
ONE ALWAYS LIES, ONE ALWAYS TELLS THE TRUTH, AND
ONE STABS PEOPLE WHO ASK TRICKY QUESTIONS.

digital circuits

Computing with logic
— T corresponds to 1 or “high” voltage
— F corresponds to 0 or “low” voltage

Gates:
— Take inputs and produce outputs (functions)
— Several kinds of gates
— Correspond to propositional connectives

AND gate

AND Connective VS. AND Gate
q gom

ouT

M M| - |-
M - MM - Q >
M| MM |- >

O | O | = |=(=T
o= o=
OO0 oO |-

p—
q_

“block looks like D of AND”

AND ouT

OR gate

OR Connective VS.

OR Gate
0UT

ouT

MM |- -|S

'I'I—I'I'I—l-Q<
M| —| -] —-|<

O | O | = |=(=T

O (- O |-

“arrowhead block looks like v”

NOT gate

NOT Connective

VS.

NOT

ouT

NOT Gate (Alsocalled

p—piopo—an

p

ouT

1

0

0

1

inverter)

+ "gee, thanks. blobs are okay

You can write gates using blobs instead of shapes.

Pom
q
Pom
q

pOUT

combinational Iogic circuits

"
)

Values get sent along wires connecting gates

combinational Iogic circuits

AND

-1

|

AND

)

Wires can send one value to multiple gates!

Iogical equivalence

Terminology: A compound proposition Is a...
— Tautology if it is always true
— Contradiction if it is always false
— Contingency if it can be either true or false

Classify!
’T 6\\,\ " éz

C,ov\’ffNLC/hOV\

Pv—=p

pPOp

P-dap Comtingeny

B DY@ APV PAPYERAD walﬁ
(S SR ;

/

|ogica| equivalence

Terminology: A compound proposition Is a...
— Tautology if it is always true
— Contradiction if it is always false
— Contingency if it can be either true or false

Classify! gwblﬁ ‘.
((p/\q/\r)v(—rp/\q/\—n"))/\((quV—ls)V(p/\q/\S))
- pi-\?
P\=
T

|ogica| equivalence

A and B are logically equivalent if and only if

A <> B s a tautology

I.e. A and B have the same truth table

The notation A = B denotes A and B are logically equivalent.

Example: p=—=—=p

TIF |~ | 7
FIT1lE [A

A<> Bvs. A=B

A = B says that two propositions A and B always mean the same thing.

A <> B is a single proposition that may be true or false depending on
the truth values of the variables in A and 5.

but A =B and (A <> B) =T have the same meaning.

Note: Why write A =B and not A=B?

[We use A=B to say that A and B are precisely the same proposition
(same sequence of symbols)] P ~ P

P_f_ "!—!P
Pg’\‘lp

de Morgan's laws

- (pN\q) = "p V19
—(pvy) = 1p Aq

My code compiles or there is a
bug.

[let’s negate it]

CO(IL C’OQS not COM“)LLL
O‘V\A A’\LVL 3 Mo lol'ﬂ

“Always wear breathable fabrics
Write NAND using NOT and OR: when you get your picture

ﬁ_ P Do — taken.
) ~[o— = o
i TM—))\//

de Morgan's laws

Verify: —(pagq)= (=pV-q)

plq|—=p |—-q |=pv=q |pArq |=(PAQ) |m(PAGQ S (=pVv—g)
TTIF |F | F T | F T
TIFl g | T T F il T
FIT| 7 | F T £ T T
e e T

de Morgan's laws

- (pANq)=-pV-q
- (pvq)=-pA-q

if !(front != null && value > front.data)
front = new ListNode(value, front);

else {
ListNode current = front;
while !(current.next == null || current.next.data >= value)

current = current.next;
current.next = new ListNode(value, current.next);

if Case : gVOn’r-_—:v\uM oY vaﬂ»\(ﬁom‘,cb.i‘m

While steps: cwrnt ek cnall o Q,\Avm’f.hu’r,Jg\M\,, vc\l,.,\
RLF'QA\"M/\ QO\MS BQW o~ sevtdd _L'(\kCol List.

law ofimplication

- q@ = (—pV q)

P |9 |P>q |-p |—-Pvq | (P9 (=pVve)

T |T | ™ F | gl

T |F | C F | £ T

FlT |+ |7 | 2

FIF T | 7T T

Iﬁ w0 m{j Hrsn I how ™y \Ab\lf‘tM&\
I+ ’.3 y;p:\' fO\;“;m of I \WM VU V""b“d,\‘

computing equivalence

Describe an algorithm for computing if two logical
expressions/circuits are equivalent.

What is the run time of the algorithm?

some familiar properties of arithmetic

s x+y=y+x (commutativity)
e x-(y+z)=x-y+x-z (distributivity)
¢« (x+y)+z=x+(y+2z) (associativity)

Logic has similar algebraic properties

some familiar properties of arithmetic

s xX+y=y+x (commutativity)
—-pVvVqg=qVp
—pPANqQ=qAD

s x-(y+z)=x-y+x-2z (distributivity)

-pA(@VTr)=(@AQV(DAT)
-pvV(@Ar)=(@V@EA(pVT)

s (x+y)+z=x+{y+2 (associativity)
-(pvgeVvr=pv(qVr)
- (PAQAT=pA(qQAT)

properties of |ogica| connectives

|dentity You will always get this list.
— pAT=p
— pvF=p Associative

(pvgVvr=pVv(qVr)
PA@Q AT =pA(qAT)

Domination
- pVT=T - Distributive
-~ PAFEF pA(@Vr)=(@AqQV(pAT)
pVv@arr)=@EvaArVvr)
|dempotent _
pv _ » Absorption
R pV(pAg) =p
- PAP=D pA(PVq)=p
Commutative * Negation
— pV-ap = T
P 1rP pAN-p=F

— PAQ=qADp

