Course web: http://www.cs.washington.edu/311

Office hours: 12 office hours each week

Me/James: MW 10:30-11:30/2:30-3:30pm or by appointment

TA Section: Start next week

Call me: Shayan

Don't: Actually call me.

Homework #1: Will be posted today, due next Friday by midnight (Oct 9th)

Gradescope! (stay tuned)

Extra credit: Not required to get a 4.0.

Counts separately.

In total, may raise grade by ~ 0.1

Don't be shy (raise your hand in the back)! Do space out your participation.

If you are not CSE yet, please do well!

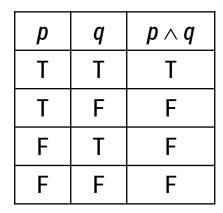
logical connectives

р	¬ p
T	F
F	T

NOT

p	q	$p \lor q$
T	T	Т
T	F	Т
F	T	Т
F	F	F

OR



AND

р	q	p⊕q
Т	T	F
Т	F	Т
F	Т	Т
F	F	F

XOR

- "If p, then q" is a **promise**:
 - Whenever p is true, then q is true
 - Ask "has the promise been broken"

р	q	$p \rightarrow q$
F	F	T
F	Т	T
Т	F	F
Т	Т	T

If it's raining, then I have my umbrella.

I have my umbrella if it is raining

It is raining only if I have my umbrella

Implication:

Converse:

- **Contrapositive:**

Inverse:

How do these relate to each other?

How to see this?

If rain, I have my ambile the not rain (conta posi)

•
$$p \text{ iff } q$$
• $p \text{ is equivalent to } q$

- p is equivalent to q
- p implies q and q implies p

p	q	$p \leftrightarrow q$
+	+	+
T	L	F
F	+	F
F	F	7

A fruit is an apple only if it is either red or green and a fruit is not red and green.

p: "Fruit is an apple"

q: "Fruit is red"

r: "Fruit is green"

A fruit is an apple only if it is either red or green and a fruit is not red and green.

(FApple only if (FGreen xor FRed)) and (not (FGreen and FRed))

(FApple \rightarrow (FGreen \oplus FRed)) \land (\neg (FGreen \land Fred))

p : FApple

q: FGreen

r: FRed

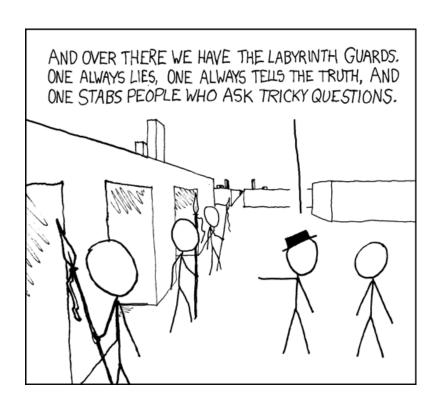
$$(P \rightarrow (q \oplus r)) \wedge (\neg (q \wedge r))$$

Fruit Sentence with a truth table

p	\boldsymbol{q}	r	$q \oplus r$	$p \rightarrow (q \oplus r)$	$q \wedge r$	$\neg (q \land r)$	$(p \to (q \oplus r)) \land (\neg (q \land r))$
T	T	Т					
T	T	F					
T	F	T					
T	F	F					
F	I	T					
F	T	F					
F	F	Т					
F	F	F					

Spring 2015

Lecture 2: Digital circuits & more logic



Computing with logic

- T corresponds to 1 or "high" voltage
- F corresponds to 0 or "low" voltage

Gates:

- Take inputs and produce outputs (functions)
- Several kinds of gates
- Correspond to propositional connectives

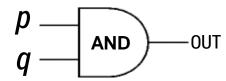
AND Connective

VS.

AND Gate

ρ∧q		
p	q	p \land q
Т	T	T
Т	F	F
F	T	F
F	F	F

p	q	OUT
1	1	1
1	0	0
0	1	0
0	0	0



"block looks like D of AND"

OR Connective

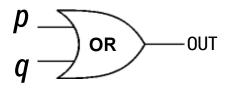
VS.

OR Gate

-OUT

$p \lor q$		
p	q	p∨q
Т	T	Т
Т	F	T
F	T	T
F	F	F

p	q	OUT
1	1	1
1	0	1
0	1	1
0	0	0



[&]quot;arrowhead block looks like ∨"

NOT Connective

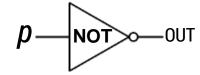
VS.

NOT Gate (Also called inverter)

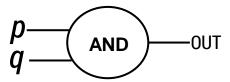
p	OUT
1	0
0	1

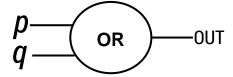
$\neg p$

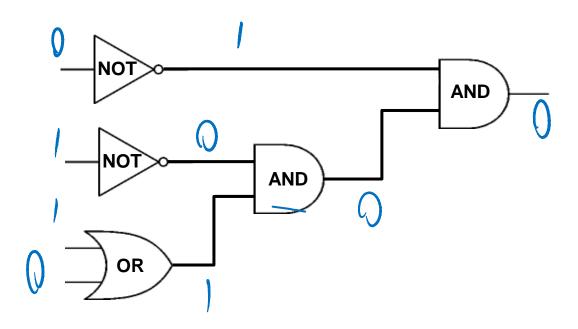
p	$\neg p$
T	F
F	T



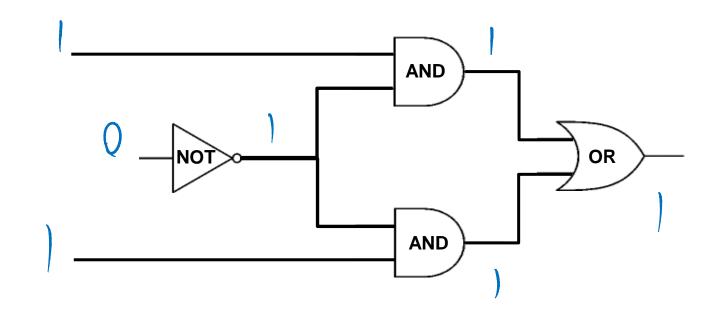
You can write gates using blobs instead of shapes.







Values get sent along wires connecting gates



Wires can send one value to multiple gates!

Terminology: A compound proposition is a...

- Tautology if it is always true
- Contradiction if it is always false
- Contingency if it can be either true or false

Classify!

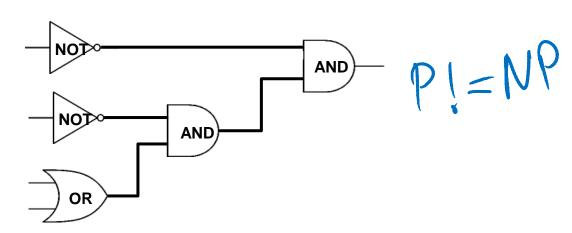
$$p \lor \neg p$$
 Tantalogy
 $p \oplus p$ Contradiction
 $(p \to q) \land p$ Contingency
 $(p \land q) \lor (p \land \neg q) \lor (\neg p \land q) \lor (\neg p \land \neg q)$ Tantaly

Terminology: A compound proposition is a...

- Tautology if it is always true
- Contradiction if it is always false
- Contingency if it can be either true or false

Classify!

$$((p \land q \land r) \lor (\neg p \land q \land \neg r)) \land ((p \lor q \lor \neg s) \lor (p \land q \land s))$$



A and B are logically equivalent if and only if

$$A \longleftrightarrow B$$
 is a tautology

i.e. A and B have the same truth table

The notation A = B denotes A and B are logically equivalent.

Example: $p \equiv \neg \neg p$

p	¬ <i>p</i>	¬ ¬ p	$p \leftrightarrow \neg \neg p$
T	F	7	
F	T	F	1

 $A \equiv B$ says that **two** propositions A and B always **mean** the same thing.

 $A \leftrightarrow B$ is a **single** proposition that may be true or false depending on the truth values of the variables in A and B.

but $A \equiv B$ and $(A \leftrightarrow B) \equiv T$ have the same meaning.

Note: Why write A = B and not A=B?

[We use A=B to say that A and B are precisely the same proposition

(same sequence of symbols)]

$$\neg (p \land q) \equiv \neg p \lor \neg q$$

$$\neg (p \lor q) \equiv \neg p \land \neg q$$

My code compiles or there is a bug.

[let's negate it]

My code does not complishe and there is no buy

Write NAND using NOT and OR:

"Always wear breathable fabrics when you get your picture taken."

Verify:
$$\neg (p \land q) \equiv (\neg p \lor \neg q)$$

p	q	¬ <i>p</i>	$\neg q$	$\neg p \lor \neg q$	p∧q	$\neg (p \land q)$	$\neg (p \land q) \leftrightarrow (\neg p \lor \neg q)$
Т	Т	F	F	F		F	T
Т	F	F	1	T	F	T	T
F	Т	1	F	T	ţ	T	T
F	F	7	T	T	F	T	T

```
\neg (p \land q) \equiv \neg p \lor \neg q\neg (p \lor q) \equiv \neg p \land \neg q
```

```
if !(front != null && value > front.data)
      front = new ListNode(value, front);
   else {
      ListNode current = front;
      while !(current.next == null || current.next.data >= value)
          current = current.next;
      current.next = new ListNode(value, current.next);
            front = = null or value < front.data
While stops: current next = - null or current next data , value
   Repeated calls gin a sorted linked list.
```

$$(p \rightarrow q) \equiv (\neg p \lor q)$$

p	q	$p \rightarrow q$	¬ p	$\neg p \lor q$	$(p \to q) \leftrightarrow (\neg p \lor q)$
Т	Т	7	F	1	T
T	F	F	F	F	T
F	Т	T	T	T	丁
F	F	T	1	十	T

If it is voing that I have my unbulla.

It is not raining or I have my unbulla.

Describe an algorithm for computing if two logical expressions/circuits are equivalent.

What is the run time of the algorithm?

some familiar properties of arithmetic

- x + y = y + x (commutativity)
 x · (y + z) = x · y + x · z (distributivity)
- (x + y) + z = x + (y + z) (associativity)

Logic has similar algebraic properties

some familiar properties of arithmetic

•
$$x + y = y + x$$

 $- p \lor q \equiv q \lor p$
 $- p \land q \equiv q \land p$

(commutativity)

•
$$x \cdot (y + z) = x \cdot y + x \cdot z$$
 (distributivity)
- $p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$
- $p \vee (q \wedge r) \equiv (p \vee q) \wedge (p \vee r)$

•
$$(x + y) + z = x + (y + z)$$
 (associativity)
 $- (p \lor q) \lor r \equiv p \lor (q \lor r)$
 $- (p \land q) \land r \equiv p \land (q \land r)$

Identity

$$- p \wedge T \equiv p$$

$$- p \lor F \equiv p$$

Domination

$$- p \lor T \equiv T$$

$$- p \wedge F \equiv F$$

Idempotent

$$- p \lor p \equiv p$$

$$- p \wedge p \equiv p$$

Commutative

$$- p \lor q \equiv q \lor p$$

$$- p \wedge q \equiv q \wedge p$$

You will always get this list.

Associative

$$(p \lor q) \lor r \equiv p \lor (q \lor r)$$

 $(p \land q) \land r \equiv p \land (q \land r)$

Distributive

$$p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$$
$$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$$

Absorption

$$p \lor (p \land q) \equiv p$$
$$p \land (p \lor q) \equiv p$$

Negation

$$p \lor \neg p \equiv T$$
$$p \land \neg p \equiv F$$