Course web: http://www.cs.washington.edu/311

Office hours: 12 office hours each week

Me/James: MW 10:30-11:30/2:30-3:30pm or by appointment

TA Section: Start next week

Call me: Shayan

Don't: Actually call me.

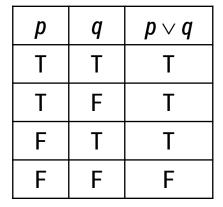
Homework #1: Will be posted today, due next Friday by midnight (Oct 9th)

Gradescope! (stay tuned)

Extra credit: Not required to get a 4.0.

Counts separately.

In total, may raise grade by ~ 0.1


Don't be shy (raise your hand in the back)! Do space out your participation.

If you are not CSE yet, please do well!

logical connectives

р	$\neg p$
T	F
F	T

NOT

р	q	<i>p</i> ∧ <i>q</i>
Т	T	Т
Т	F	F
F	T	F
F	F	F

AND

р	q	p⊕q
Т	T	F
Т	F	Т
F	T	Т
F	F	F

OR XOR

- "If p, then q" is a **promise**:
 - Whenever p is true, then q is true
 - Ask "has the promise been broken"

р	q	$p \rightarrow q$
F	F	T
F	Т	Т
T	F	F
Т	Т	T

If it's raining, then I have my umbrella.

I have my umbrella if it is raining

It is raining only if I have my umbrella.

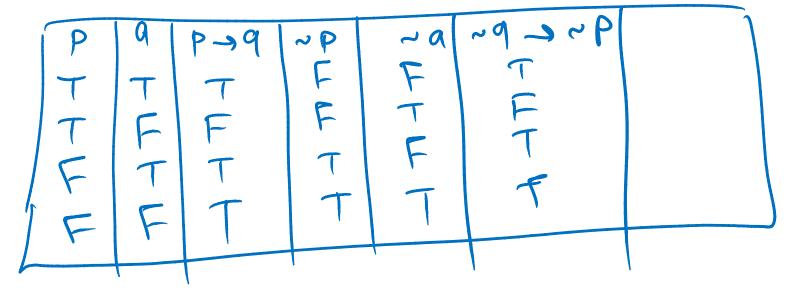
Implication:

 $p \rightarrow q$

Converse:

 $-q \rightarrow p$

Contrapositive:


 $\neg q \rightarrow \neg p$

Inverse:

 $\neg p \rightarrow \neg q$

How do these relate to each other?

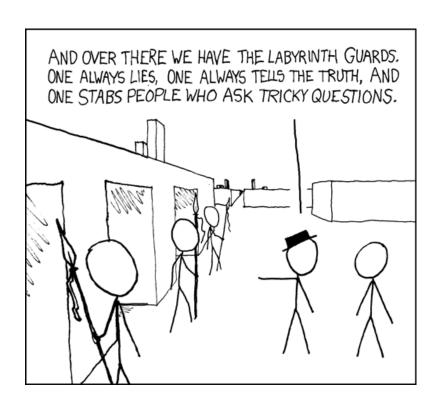
How to see this?

$$p \leftrightarrow q$$

p only if q

9->F	?-	۱ و	P	(Q
P >9	J				

- p is equivalent to q
- p implies q and q implies p


p	q	$p \leftrightarrow q$
T	+	+
T	F	F
F	T	F
F	F	

p	q	r	$q \oplus r$	$p \rightarrow (q \oplus r)$	$q \wedge r$	$\neg (q \land r)$	$(p \to (q \oplus r)) \land (\neg (q \land r))$
T	Т	T					
T	Т	F					
T	F	Т					
T	F	F					
F	T	Т					
F	T	F					
F	F	Т					
F	F	F					

A fruit is an apple only if it is either red or green and a fruit is not red and green.

Spring 2015

Lecture 2: Digital circuits & more logic

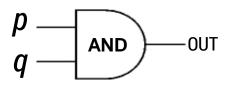
Computing with logic

- T corresponds to 1 or "high" voltage
- F corresponds to 0 or "low" voltage

Gates:

- Take inputs and produce outputs (functions)
- Several kinds of gates
- Correspond to propositional connectives

AND Connective


VS.

AND Gate

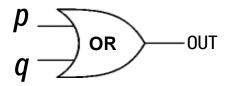
-OUT

p \ \ q		
p	q	p ^ q
Т	T	T
Т	F	F
F	T	F
F	F	F

p	q	OUT
1	1	1
1	0	0
0	1	0
0	0	0

"block looks like D of AND"

OR Connective


VS.

OR Gate

-OUT

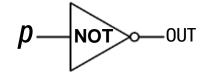
$p \lor q$		
p	q	p∨q
Т	T	T
Т	F	T
F	T	T
F	F	F

p	q	OUT	
1	1	1	
1	0	1	
0	1	1	
0	0	0	

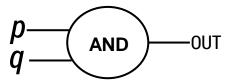
[&]quot;arrowhead block looks like ∨"

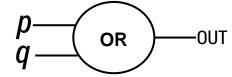
NOT Connective

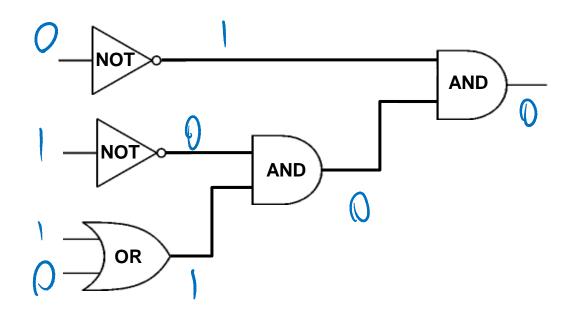
VS.


NOT Gate (Also called inverter)

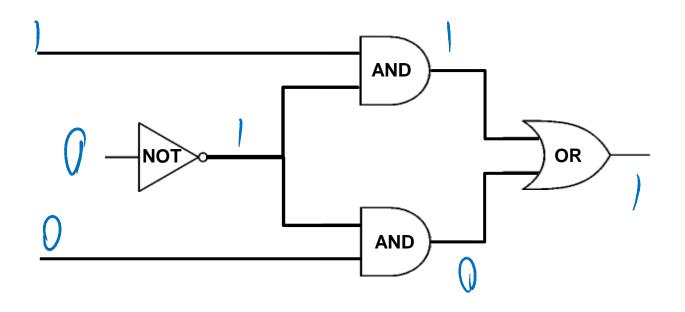
p	OUT	
1	0	
0	1	


$\neg p$


p	¬ <i>p</i>
T	F
F	T



You can write gates using blobs instead of shapes.



Values get sent along wires connecting gates

Wires can send one value to multiple gates!

Terminology: A compound proposition is a...

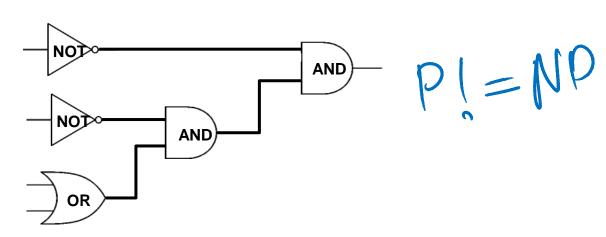
- Tautology if it is always true
- Contradiction if it is always false
- Contingency if it can be either true or false

Classify! Q is Tantalogy
$$p \lor \neg p \quad \text{Tantalogy}$$

$$p \oplus p \quad \text{Contradic}$$

$$(p \to q) \land p \quad \text{Contingens}$$

$$(p \land q) \lor (p \land \neg q) \lor (\neg p \land q) \lor (\neg p \land \neg q) \quad \text{Tant.}$$


$$p \to q \mapsto q \quad \text{Tantalogy}$$

Terminology: A compound proposition is a...

- Tautology if it is always true
- Contradiction if it is always false
- Contingency if it can be either true or false

Classify!

$$((p \land q \land r) \lor (\neg p \land q \land \neg r)) \land ((p \lor q \lor \neg s) \lor (p \land q \land s))$$

A and B are logically equivalent if and only if

$$A \longleftrightarrow B$$
 is a tautology

i.e. A and B have the same truth table

The notation A = B denotes A and B are logically equivalent.

Example: $p \equiv \neg \neg p$

p	¬ <i>p</i>	$\neg \neg p$	$p \leftrightarrow \neg \neg p$
7	7	+	\-
TI	7	H	

 $A \equiv B$ says that **two** propositions A and B always **mean** the same thing.

 $A \leftrightarrow B$ is a **single** proposition that may be true or false depending on the truth values of the variables in A and B.

but $A \equiv B$ and $(A \leftrightarrow B) \equiv T$ have the same meaning.

Note: Why write A = B and not A = B?

[We use A=B to say that A and B are precisely the same proposition

(same sequence of symbols)]

$$\neg (p \land q) \equiv \neg p \lor \neg q$$

$$\neg (p \lor q) \equiv \neg p \land \neg q$$

My code compiles or there is a bug.

[let's negate it]

My code does not compile and there is no buy

Write NAND using NOT and OR:

"Always wear breathable fabrics when you get your picture taken."

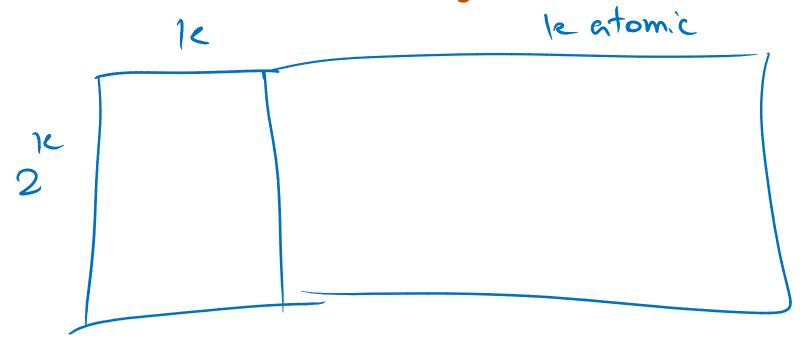
Verify:
$$\neg (p \land q) \equiv (\neg p \lor \neg q)$$

p	q	¬ <i>p</i>	$\neg q$	$\neg p \lor \neg q$	$p \wedge q$	$\neg (p \land q)$	$\neg (p \land q) \leftrightarrow (\neg p \lor \neg q)$
T	Т	F	L	F	T	I I	T
Т	F	H	+	+	F	十	T
F	T	7	Ľ.	+	F	T	
F	F	7	T		Ĺ	T	

```
\neg (p \land q) \equiv \neg p \lor \neg q\neg (p \lor q) \equiv \neg p \land \neg q
```

```
if !(front != null && value > front.data)
       front = new ListNode(value, front);
   else {
       ListNode current = front;
       while !(current.next == null || current.next.data >= value)
           current = current.next;
       current.next = new ListNode(value, current.next);
If Case: front=>null or valu & front-denta
While Stops: current, rext==null or current. next. data y, val
Repeated calls give sorted linked list
```

$$(p \rightarrow q) \equiv (\neg p \lor q)$$


p	q	$p \rightarrow q$	¬ p	$\neg p \lor q$	$(p \to q) \leftrightarrow (\neg p \lor q)$
Т	Т	一て	F	+	T
T	F	F	F	F	T
F	Т	T	T	十	T
F	F	T	T	T	T

If voing then I have my umbable. It does not voin or I have my umbable.

Describe an algorithm for computing if two logical expressions/circuits are equivalent.

Zk

What is the run time of the algorithm?

some familiar properties of arithmetic

- x + y = y + x (commutativity)
- $x \cdot (y + z) = x \cdot y + x \cdot z$ (distributivity)
- (x + y) + z = x + (y + z) (associativity)

Logic has similar algebraic properties

some familiar properties of arithmetic

•
$$x + y = y + x$$

 $- p \lor q \equiv q \lor p$
 $- p \land q \equiv q \land p$

•
$$x \cdot (y + z) = x \cdot y + x \cdot z$$
 (distributivity)
- $p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$
- $p \vee (q \wedge r) \equiv (p \vee q) \wedge (p \vee r)$

•
$$(x + y) + z = x + (y + z)$$
 (associativity)
- $(p \lor q) \lor r \equiv p \lor (q \lor r)$
- $(p \land q) \land r \equiv p \land (q \land r)$

Identity

$$- p \wedge T \equiv p$$

$$- p \lor F \equiv p$$

Domination

$$- p \lor T \equiv T$$

$$- p \wedge F \equiv F$$

Idempotent

$$- p \lor p \equiv p$$

$$- p \wedge p \equiv p$$

Commutative

$$- p \lor q \equiv q \lor p$$

$$- p \wedge q \equiv q \wedge p$$

You will always get this list.

Associative

$$(p \lor q) \lor r \equiv p \lor (q \lor r)$$

 $(p \land q) \land r \equiv p \land (q \land r)$

Distributive

$$p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$$
$$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$$

Absorption

$$p \lor (p \land q) \equiv p$$
$$p \land (p \lor q) \equiv p$$

Negation

$$p \lor \neg p \equiv T$$
$$p \land \neg p \equiv F$$