
administrivia

Course web: http://www.cs.washington.edu/311

Office hours: 12 office hours each week
 Me/James: MW 10:30-11:30/2:30-3:30pm or by appointment

Homework #1: Will be posted today, due next Friday by midnight (Oct 9th)
 Gradescope! (stay tuned)

Extra credit: Not required to get a 4.0.
 Counts separately.
 In total, may raise grade by ~0.1

Call me: Shayan

Don’t: Actually call me.

If you are not CSE yet, please do well!

Don’t be shy (raise your hand in the back)!
Do space out your participation.

TA Section: Start next week

logical connectives

p  p
T F
F T

p q p  q
T T T
T F F
F T F
F F F

p q p  q
T T T
T F T
F T T
F F F

p q p  q
T T F
T F T
F T T
F F F

NOT

AND

OR XOR

 𝑝 → 𝑞

• “If p, then q” is a promise:
• Whenever p is true, then q is true
• Ask “has the promise been broken”

 p q p  q
 F F T
 F T T
 T F F
 T T T

If it’s raining, then I have my umbrella.

related implications

• Implication: p  q
• Converse: q  p
• Contrapositive: q  p
• Inverse: p  q

How do these relate to each other?
How to see this?

 𝑝 ↔ 𝑞

• p iff q
• p is equivalent to q
• p implies q and q implies p

p q p  q

The Fruit Sentence

A fruit is an apple only if it is either red or green and a fruit is not red
and green.

p q r 𝒒 ⊕ 𝒓 𝒑 → (𝒒 ⊕ 𝐫) 𝒒 ∧ 𝒓 ¬(𝒒 ∧ 𝒓) (𝒑 → 𝒒 ⊕ 𝐫) ∧ (¬ 𝒒 ∧ 𝒓)

T T T
T T F
T F T
T F F
F T T
F T F
F F T
F F F

cse 311: foundations of computing

Spring 2015
Lecture 2: Digital circuits & more logic

digital circuits

Computing with logic
– T corresponds to 1 or “high” voltage
– F corresponds to 0 or “low” voltage

Gates:

– Take inputs and produce outputs (functions)
– Several kinds of gates
– Correspond to propositional connectives

AND gate

p q p  q
T T T
T F F

F T F

F F F

p q OUT

1 1 1
1 0 0
0 1 0
0 0 0

AND Connective AND Gate

q
p

OUT AND

“block looks like D of AND”

p OUT AND q p  q

vs.

OR gate

p q p  q
T T T

T F T

F T T
F F F

p q OUT

1 1 1
1 0 1
0 1 1
0 0 0

OR Connective OR Gate

p OUT OR q p  q

vs.

p
q

OR

“arrowhead block looks like ∨”

OUT

NOT gate

 p

NOT Gate

p  p
T F
F T

p OUT

1 0
0 1

vs. NOT Connective (Also called
inverter)

p OUT NOT

p OUT NOT

blobs are okay

p OUT NOT

p
q OUT AND

p
q OUT OR

You can write gates using blobs instead of shapes.

“gee, thanks.”

combinational logic circuits

Values get sent along wires connecting gates

NOT

OR

AND

AND

NOT

combinational logic circuits

Wires can send one value to multiple gates!

OR

AND

NOT

AND

logical equivalence

Terminology: A compound proposition is a…
– Tautology if it is always true
– Contradiction if it is always false
– Contingency if it can be either true or false

 p   p

p  p

(p  q)  p

(p  q)  (p   q)  ( p  q)  ( p   q)

Classify!

logical equivalence

Terminology: A compound proposition is a…
– Tautology if it is always true
– Contradiction if it is always false
– Contingency if it can be either true or false

𝑝 ∧ 𝑞 ∧ 𝑟 ∨ ¬𝑝 ∧ 𝑞 ∧ ¬𝑟 ∧ 𝑝 ∨ 𝑞 ∨ ¬𝑠 ∨ 𝑝 ∧ 𝑞 ∧ 𝑠

Classify!

NOT

OR

AND

AND

NOT

logical equivalence

A and B are logically equivalent if and only if
 A  B is a tautology

 i.e. A and B have the same truth table

The notation A  B denotes A and B are logically equivalent.

Example: p    p

p  p   p p    p

A  B vs. A  B

A  B says that two propositions A and B always mean the same thing.

A  B is a single proposition that may be true or false depending on
the truth values of the variables in A and B.
 but A  B and (A  B)  T have the same meaning.

Note: Why write A  B and not A=B ?
[We use A=B to say that A and B are precisely the same proposition
 (same sequence of symbols)]

My code compiles or there is a
bug.

[let’s negate it]

de Morgan’s laws

Write NAND using NOT and OR:
“Always wear breathable fabrics
when you get your picture
taken.”

de Morgan’s laws

p q  p  q  p   q p  q  (p  q)  (p  q)  ( p   q)
T T
T F
F T
F F

Verify:  𝑝  𝑞 ≡ (¬ 𝑝 ∨ ¬ 𝑞)

 𝑝 ∧ 𝑞 ≡ ¬ 𝑝 ∨ ¬ 𝑞
 𝑝 ∨ 𝑞 ≡ ¬ 𝑝 ∧ ¬ 𝑞

if !(front != null && value > front.data)
 front = new ListNode(value, front);
else {
 ListNode current = front;
 while !(current.next == null || current.next.data >= value)
 current = current.next;
 current.next = new ListNode(value, current.next);
}

de Morgan’s laws

law of implication

p q p  q  p  p  q (p  q)  ( p  q)
 T T
 T F
 F T
 F F

𝑝 → 𝑞 ≡ (¬ 𝑝 ∨ 𝑞)

computing equivalence

Describe an algorithm for computing if two logical
expressions/circuits are equivalent.

What is the run time of the algorithm?

some familiar properties of arithmetic

• 𝑥 + 𝑦 = 𝑦 + 𝑥 (commutativity)
• 𝑥 ⋅ 𝑦 + 𝑧 = 𝑥 ⋅ 𝑦 + 𝑥 ⋅ 𝑧 (distributivity)
• 𝑥 + 𝑦 + 𝑧 = 𝑥 + (𝑦 + 𝑧) (associativity)

Logic has similar algebraic properties

some familiar properties of arithmetic

• 𝑥 + 𝑦 = 𝑦 + 𝑥 (commutativity)
– 𝑝 ∨ 𝑞 ≡ 𝑞 ∨ 𝑝
– 𝑝 ∧ 𝑞 ≡ 𝑞 ∧ 𝑝

• 𝑥 ⋅ 𝑦 + 𝑧 = 𝑥 ⋅ 𝑦 + 𝑥 ⋅ 𝑧 (distributivity)

– 𝑝 ∧ 𝑞 ∨ 𝑟 ≡ 𝑝 ∧ 𝑞 ∨ (𝑝 ∧ 𝑟)
– 𝑝 ∨ 𝑞 ∧ 𝑟 ≡ 𝑝 ∨ 𝑞 ∧ (𝑝 ∨ 𝑟)

• 𝑥 + 𝑦 + 𝑧 = 𝑥 + (𝑦 + 𝑧) (associativity)
– 𝑝 ∨ 𝑞 ∨ 𝑟 ≡ 𝑝 ∨ 𝑞 ∨ 𝑟
– 𝑝 ∧ 𝑞 ∧ 𝑟 ≡ 𝑝 ∧ (𝑞 ∧ 𝑟)

properties of logical connectives

• Identity
– 𝑝 ∧ T ≡ 𝑝
– 𝑝 ∨ F ≡ 𝑝

• Domination

– 𝑝 ∨ T ≡ T
– 𝑝 ∧ F ≡ F

• Idempotent

– 𝑝 ∨ 𝑝 ≡ 𝑝
– 𝑝 ∧ 𝑝 ≡ 𝑝

• Commutative

– 𝑝 ∨ 𝑞 ≡ 𝑞 ∨ 𝑝
– 𝑝 ∧ 𝑞 ≡ 𝑞 ∧ 𝑝

You will always get this list.

• Associative
𝑝 ∨ 𝑞 ∨ 𝑟 ≡ 𝑝 ∨ 𝑞 ∨ 𝑟
𝑝 ∧ 𝑞 ∧ 𝑟 ≡ 𝑝 ∧ 𝑞 ∧ 𝑟

• Distributive

𝑝 ∧ 𝑞 ∨ 𝑟 ≡ 𝑝 ∧ 𝑞 ∨ (𝑝 ∧ 𝑟)
𝑝 ∨ 𝑞 ∧ 𝑟 ≡ 𝑝 ∨ 𝑞 ∧ (𝑝 ∨ 𝑟)

• Absorption
𝑝 ∨ 𝑝 ∧ 𝑞 ≡ 𝑝
𝑝 ∧ 𝑝 ∨ 𝑞 ≡ 𝑝

• Negation

𝑝 ∨ ¬𝑝 ≡ T
𝑝 ∧ ¬𝑝 ≡ F

