CSE 311: Foundations of Computing (Autumn, 2015)

Homework 1 Out: Friday, 2-Oct. Due: Friday, 9-Oct, 11:59PM on Gradescope

1. English Translation [12 points]

Write each of these statements in the form "if p, then q'' in English.

- (a) To become a president of the Unites States, it is necessary to be a natural-born citizen.
- (b) Whenever I hike for an 10 hours, I have to rest for a day.

(c) To travel to the moon, it is enough to have a billion dollars.

(d) TAs will grade the solutions to the homework when the deadline is passed.

Nonequivalent Logical Statements [12 points]

Use truth assignments to show that the two propositions in each part are not logically equivalent:

(a)
$$p \lor q$$
 vs. $\neg (p \land q)$

(b)
$$(p \oplus q) \lor (p \oplus r)$$
 vs. $p \lor q \lor r$

(c) $(p \to q) \to (q \to p)$ vs. $(q \to p) \to (p \to q)$

(d)
$$(((p \to q) \to r) \to s) \to p$$
 vs. $p \to (q \to (r \to (s \to p)))$

3. Equivalence of NAND [18 points]

Define the NAND logical connective: $p#q \equiv \neg(p \land q)$. In this part, we will see that you can design a digital circuit made up of only the NAND connectives for any logical proposition. For each of the following propositions, write a logically equivalent proposition using only the connective # and possibly the literals T and F.

(a) ¬*p* (b) $p \wedge q$ (c) $p \lor q$ (d) $p \oplus q$ (e) $p \rightarrow q$ (f) $p \leftrightarrow q$

4. Simple circuit design [10 points]

Using only the following gates:

Design a circuit with **three inputs** that computes the function M(p, q, r) where

 $M(T,q,r) = q \land \neg r$ $M(F,q,r) = \neg q \lor r$

Extra credit: XNORing

For two bits a and b, we define XNOR $(a, b) = \neg(a \oplus b)$. Suppose we have two memory registers with the same number of bits. You also have an operator XNOR (R_1, R_2) which takes the two registers, performs a bitwise XNOR between them, and stores the result in R_1 .

Show how you can swap the contents of the registers using a sequence of XNORs without temporary memory registers.