CSE 311: Foundations of Computing I

Solving Modular Equivalences

Solving a Normal Equation

First, we discuss an analogous type of question when using normal arithmetic.
Question: Solve the equation $27 y=12$.
Solution: We divide both sides by 27 to get $y=\frac{12}{27}$.
Solution: We multiply both sides by $1 / 27$ to get $y=\frac{12}{27}$.
These solutions are two ways of saying the same thing.

Solving a Modular Congruence

Now, we consider a congruence instead:
Question: Solve the congruence $27 y \equiv 10(\bmod 4)$.
Note: We can't just divide both sides. For example, consider $5 \equiv 10(\bmod 5)$. If we were to divide both sides by 5 , we would get $1 \equiv 2(\bmod 5)$ which is definitely false.
Another way of looking at this would be to ask the question What is $\frac{1}{5} \bmod 5$? It really doesn't make any sense, because remainders should always be integers.
So, instead, we need to create machinery to multiply by whatever the correct inverse is mod a number.

Inverses

If $x y=1$, we say that y is the "multiplicative inverse of x ".
We have a similar idea $\bmod m$: If $x y \equiv 1(\bmod m)$, we say y is the "multiplicative inverse of x modulo $m^{\prime \prime}$.

How do we compute the multiplicative inverse of x modulo m ?

By definition, $x y \equiv 1(\bmod m)$ iff $x y+t m=1$ for some $t \in \mathbb{Z}$. We know by Bezout's Theorem that we can find y and t such that $x y+t m=\operatorname{gcd}(x, m)$. Said another way: If $\operatorname{gcd}(x, m)=1$, then we can find a multiplicative inverse!
To actually compute the multiplicative inverse, we use the Extended Euclidean Algorithm. For example, consider the equation we were trying to solve above: $27 y \equiv 10(\bmod 4)$.
First, we find the multiplicative inverse of 27 modulo 4 . That is, we find a y such that $27 y \equiv 1(\bmod 4)$. To do this, we first note that the $\operatorname{gcd}(27,4)=\operatorname{gcd}(4,3)=\operatorname{gcd}(3,1)=\operatorname{gcd}(1,0)=1$, which means an inverse does exist!

Now, we write out the equations:

$$
\begin{aligned}
27 & =6 \bullet 4+3 \\
4 & =1 \bullet 3+1
\end{aligned}
$$

Solving each equation for the remainder:

$$
\begin{aligned}
& 3=27-6 \bullet 4 \\
& 1=4-1 \bullet 3
\end{aligned}
$$

Backward substituting, we get:

$$
\begin{aligned}
1 & =4-1 \bullet 3 \\
& =4-1 \bullet(27-6 \bullet 4) \\
& =7 \bullet 4+(-1) \bullet 27
\end{aligned}
$$

So, we have found that $-1 \bmod 4=3 \bmod 4$ is the multiplicative inverse of 27 modulo 4 . We can verify this by taking $(27 \bullet 3) \bmod 4=81 \bmod 4=1$.

Solving the original equation

Now, we need to solve the original equation: $27 y \equiv 10(\bmod 4)$.
We know from above that $27 \bullet 3 \equiv 1(\bmod 4)$. So, multiplying both sides by 10 (which works, because of a theorem from lecture; note that this is different than the theorem from the homework!), we get:

$$
27 \bullet 30 \equiv 10 \quad(\bmod 4)
$$

Since $30 \bmod 4=2$, we have $27 \bullet 2 \equiv 10(\bmod 4)$. It follows that $x=2$ solves the original equation.

Other Solutions?

We've shown that $x=2$ is one possible solution. The obvious follow-up question is "are there any others?" There are! Since $2+4 k \equiv 2(\bmod 4)$ for all $k \in \mathbb{Z}$, those are all solutions as well.

