CSE 311: Foundations of Computing I

Name: \qquad

UW ID: \qquad

Instructions:

- Closed book, closed notes, no cell phones, no calculators.
- You have $\mathbf{1 1 0}$ minutes to complete the exam.
- Answer all problems on the exam paper.
- If you need extra space use the back of a page.
- Problems are not of equal difficulty; if you get stuck on a problem, move on.
- You may tear off the last two pages of equivalence and inference rules. These must be handed in at the end but will not be graded.
- It may be to your advantage to read all the problems before beginning the exam.

Score Table Here

1. [? points]

Let $\Sigma=\{0,1\}$. Prove that the language $L=\left\{x \in \Sigma^{*}: \#_{0}(x)<\#_{1}(x)\right\}$ is irregular.
2. [? points]

Define

$$
T(n)= \begin{cases}n & \text { if } n=0,1 \\ 4 T\left(\left\lfloor\frac{n}{2}\right\rfloor\right)+n & \text { otherwise }\end{cases}
$$

Prove that $T(n) \leq n^{3}$ for $n \geq 3$.
3. [? points]

Let $\Sigma=\{0,1,2\}$.
Consider $L=\left\{w \in \Sigma^{*}\right.$: Every 1 in the string has at least one 0 before and after it $\}$.
a) Give a regular expression that represents A.
b) Give a DFA that recognizes A.
c) Give a CFG that generates A.
4. [? points]

Consider the following CFG: S $\rightarrow \mathbf{S S}|\mathbf{S} 1| \mathbf{S} 01$. Another way of writing the recursive definition of this set, Q, is as follows:

- $\varepsilon \in Q$
- If $S \in Q$, then $S 1 \in Q$ and $S 01 \in Q$
- If $S, T \in Q$, then $S T \in Q$.

Prove, by structural induction that if $w \in Q$, then w has at least as many 1 's as 0 's.
5. [? points]

For each of the following answer True or False and give a short explanation of your answer.

- Any subset of a regular language is also regular.
- The set of programs that loop forever on at least one input is decidable.
- If $\mathbb{R} \subseteq A$ for some set A, then A is uncountable.
- If the domain of discourse is people, the logical statement

$$
\exists x(P(x) \rightarrow \forall y(x \neq y \rightarrow \neg P(y))
$$

can be correctly translated as "There exists a unique person who has property P ".

- $\exists x(\forall y P(x, y)) \rightarrow \forall y(\exists x P(x, y))$ is true regardless of what predicate P is.

6. [? points]

The following is the graph of a binary relation R.

a) Draw the transitive-reflexive closure of R.

b) Let $S=\{(X, Y): X, Y \in \mathcal{P}(\mathbb{N}) \wedge X \subseteq Y\}$.

Recall that R is antisymmetric iff $((a, b) \in R \wedge a \neq b) \rightarrow(b, a) \notin R$. Prove that S is antisymmetric.
7. [? points]

Convert the following NFA into a DFA using the algorithm from lecture.

8. [? points]

Let $\Sigma=\{0,1,2\}$. Construct a DFA that recognizes exactly strings with a 0 in all positions i where $i \bmod 3=0$.

