CSE 311: Foundations of Computing IAutumn 2014Practice Final: Section XYY ZZ

Name: _____

UW ID: _____

Instructions:

- Closed book, closed notes, no cell phones, no calculators.
- You have **110 minutes** to complete the exam.
- Answer all problems on the exam paper.
- If you need extra space use the back of a page.
- Problems are not of equal difficulty; if you get stuck on a problem, move on.
- You may tear off the last two pages of equivalence and inference rules. These must be handed in at the end but will not be graded.
- It may be to your advantage to read all the problems before beginning the exam.

Score Table Here

1. [? points] Let $\Sigma = \{0, 1\}$. Prove that the language $L = \{x \in \Sigma^* : \#_0(x) < \#_1(x)\}$ is irregular. **2.** [? points] Define

$$T(n) = \begin{cases} n & \text{if } n = 0, 1\\ 4T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + n & \text{otherwise} \end{cases}$$

Prove that $T(n) \leq n^3$ for $n \geq 3$.

3. [? points] Let $\Sigma = \{0, 1, 2\}$. Consider $L = \{w \in \Sigma^* : \text{Every 1 in the string has at least one 0 before and after it}.$

a) Give a regular expression that represents A.

b) Give a DFA that recognizes A.

c) Give a CFG that generates A.

Consider the following CFG: $\mathbf{S} \rightarrow \mathbf{SS} \mid \mathbf{S}1 \mid \mathbf{S}01$. Another way of writing the recursive definition of this set, Q, is as follows:

- $\bullet \ \varepsilon \in Q$
- If $S \in Q$, then $S1 \in Q$ and $S01 \in Q$
- If $S, T \in Q$, then $ST \in Q$.

Prove, by structural induction that if $w \in Q$, then w has at least as many 1's as 0's.

For each of the following answer True or False and give a short explanation of your answer.

- Any subset of a regular language is also regular.
- The set of programs that loop forever on at least one input is decidable.
- If $\mathbb{R} \subseteq A$ for some set A, then A is uncountable.
- If the domain of discourse is people, the logical statement

$$\exists x \ (P(x) \to \forall y \ (x \neq y \to \neg P(y)))$$

can be correctly translated as "There exists a unique person who has property P".

• $\exists x \ (\forall y \ P(x,y)) \rightarrow \forall y \ (\exists x \ P(x,y))$ is true regardless of what predicate P is.

6. [? points] The following is the graph of a binary relation *R*.

a) Draw the transitive-reflexive closure of R.

b) Let $S = \{(X, Y) : X, Y \in \mathcal{P}(\mathbb{N}) \land X \subseteq Y\}$. Recall that R is antisymmetric iff $((a, b) \in R \land a \neq b) \rightarrow (b, a) \notin R$. Prove that S is antisymmetric.

Convert the following NFA into a DFA using the algorithm from lecture.

Let $\Sigma = \{0, 1, 2\}$. Construct a DFA that recognizes exactly strings with a 0 in all positions i where $i \mod 3 = 0$.