CSE 311 Quiz Section 4: Apr 24, 2014

1 Student Questions

2 Problems \#3 and \#4 from Homework 3

3 Practice Problems

1. (13, Section 4.1, 7 th edition) Assume a, b are integers, $a \equiv 4(\bmod 13)$ and $b \equiv 9(\bmod 13)$. Find integer $0 \leq c \leq 12$ such that:
(a) $c \equiv 9 a(\bmod 13)$
(b) $c \equiv 11 b(\bmod 13)$
(c) $c \equiv a+b(\bmod 13)$
(d) $c \equiv 2 a+3 b(\bmod 13)$
(e) $c \equiv a^{2}+b^{2}(\bmod 13)$
(f) $c \equiv a^{3}-b^{3}(\bmod 13)$
2. (24, Section 4.1, 7 th edition) Find integer a such that:
(a) $a \equiv 43(\bmod 27),-22 \leq a \leq 0$
(b) $a \equiv 17(\bmod 31),-14 \leq a \leq 14$
(c) $a \equiv-11(\bmod 21), 90 \leq a \leq 110$
3. (35, Section 4.1, 7 th edition) Show that if $n \mid m$, where n, m integers greater than 1 , and if $a \equiv b$ $(\bmod m)$, where a, b integers then:

$$
a \equiv b \quad(\bmod n)
$$

4. (37(a), Section 4.1, 7th edition) Find a counterexample to the following:

If $a c \equiv b c(\bmod m)$ then $a \equiv b(\bmod m)$. Note that a, b, c, m are all integers and $m \geq 2$.

