
CSE 311: Foundations of Computing

Fall 2014
Lecture 30: Wrap up

announcements

• Hand in Homework 9 now
– Pick up all old homework and exams now

– Solutions will be available on-line (username 311 
password Turing) by tomorrow.

• Review sessions
– Saturday and Sunday, 4pm, EEB 125 

– List of Final Exam Topics, Practice Final and sample 
exam questions linked on the web

– Bring your questions to the review session!

• Final exam
– Monday, 2:30-4:20 pm or 4:30-6:20, Kane 210

– Fill in Catalyst Survey by Sunday, 3pm to choose.

General phenomenon: can’t tell a book by its cover

and you can’t tell what a program does just by its 

code...

Rice’s Theorem: In general there is no way to tell

anything about the input/output (IIII/OOOO) behavior of a

program PPPP just given it code!

Note: The statement above is not precise, and we didn’t prove it, so this

isn’t something you can use on homework or exams

Even harder problems

• With the halting problem, by using the Universal 
machine (a program interpreter) we can simulate PPPP
and input xxxx and always get the truetruetruetrue answers correct

– we can’t be sure about answering falsefalsefalsefalse

• For other problems we can always answer false false false false 
correctly but maybe not the true true true true answers

• There are natural problems where you can’t even do 
that!

– The EQUIVEQUIVEQUIVEQUIV problem is an example of this kind of even 
harder problem



Quick lessons

• Don’t rely on the idea of improved compilers 

and programming languages to eliminate 

major programming errors

– truly safe languages can’t possibly do general 

computation

• Document your code!!!!

– there is no way you can expect someone else to 

figure out what your program does with just 

your code ....since....in general it is provably 

impossible to do this!

CSE 311: Foundations of Computing

Fall 2014
The “5 minute” version

about the course

• From the CSE catalog:

– CSE 311 Foundations of Computing I (4CSE 311 Foundations of Computing I (4CSE 311 Foundations of Computing I (4CSE 311 Foundations of Computing I (4) ) ) ) 
Examines fundamentals of logic, set theory, 
induction, and algebraic structures with 
applications to computing; finite state 
machines; and limits of computability. 
Prerequisite: CSE 143; either MATH 126 or 
MATH 136. 

• What this course is about:

– Foundational structures for the practice of 
computer science and engineering

propositional logic

• Statements with truth values
– The Washington State flag is red

– It snowed in Whistler, BC on January 4, 
2011.

– Rick Perry won the Iowa straw poll

– Space aliens landed in Roswell, New 
Mexico

– If n is an integer greater than two, then 
the equation an + bn = cn has no 
solutions in non-zero integers a, b, and c.

– Propositional variables: p, q, r, s, . . . 

– Truth values: TTTT for true,  FFFF for false

– Compound propositions

Negation (not)        ¬ p

Conjunction (and)  p ∧ q

Disjunction (or)      p ∨ q

Exclusive or           p ⊕ q

Implication             p → q

Biconditional p ↔ q



logical equivalence

• Terminology:  A compound proposition is a
– Tautology if it is always true

– Contradiction if it is always false

– Contingency if it can be either true or false

p ∨∨∨∨ ¬¬¬¬ p

p ⊕ p

(p → q) ∧ p

(p ∧ q) ∨ (p ∧ ¬ q) ∨ (¬ p ∧ q) ∨ (¬ p ∧ ¬ q) 

logical equivalence

• p and q are logically equivalent iff
p ↔ q is a tautology

• The notation p ≡ q denotes p and q are logically 
equivalent

• De Morgan’s Laws:

¬ (p ∧ q) ≡ ¬ p ∨ ¬ q

¬ (p ∨ q) ≡ ¬ p ∧ ¬ q

digital circuits

• Computing with logic

– TTTT corresponds to 1 or “high” voltage 

– FFFF corresponds to  0 or “low” voltage

• Gates 

– Take inputs and produce outputs
Functions

– Several kinds of gates

– Correspond to propositional connectives
Only symmetric ones (order of inputs irrelevant)

combinational logic circuits

OR

AND

AND

Wires can send one value to multiple gates



a simple example: 1-bit binary adder

• Inputs: A, B, Carry-in

• Outputs: Sum, Carry-out

A

B

Cin
Cout

S
A B Cin Cout S
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

0
1
1
0
1
0
0
1

0
0
0
1
0
1
1
1

Cout = B Cin  +  A Cin  +  A B 

S = A’ B’ Cin + A’ B Cin’ + A B’ Cin’ + A B Cin

A A A A A

B B B B B

S S S S S

CinCout

Truth Tables to Boolean Logic

c3 = (DAY == SUN and LEC) or (DAY == MON and LEC)

c3 = (d2 == 0 && d1 == 0 && d0 == 0 && L == 1) ||

(d2 == 0 && d1 == 0 && d0 == 1 && L == 1)

c3 = d2’’’’•d1’’’’•d0’’’’•L +  d2’’’’•d1’’’’•d0•L

DAY d2d1d0 L c0 c1 c2 c3

SunS 000 0 0 1 0 0

SunL 000 1 0 0 0 1

MonS 001 0 0 1 0 0

MonL 001 1 0 0 0 1

TueS 010 0 0 1 0 0

TueL 010 1 0 0 1 0

WedS 011 0 0 1 0 0

WedL 011 1 0 0 1 0

Thu 100 - 0 1 0 0

FriS 101 0 1 0 0 0

FriL 101 1 0 1 0 0

Sat 110 - 1 0 0 0

- 111 - - - - -

Boolean Algebra

• Boolean algebra to circuit design

• Boolean algebra  
– a set of elements B containing {0, 1}

– binary operations { + , • }

– and a unary operation { ’ }

– such that the following axioms hold:

1. the set B contains at least two elements: 0, 1  

For any a, b, c in B:
2. closure: a + b  is in B a • b  is in B
3. commutativity: a + b = b + a a • b = b • a
4. associativity: a + (b + c) = (a + b) + c a • (b • c) = (a • b) • c
5. identity: a + 0 = a a • 1 = a
6. distributivity: a + (b • c) = (a + b) • (a + c) a • (b + c) = (a • b) + (a • c)
7. complementarity: a + a’ = 1 a • a’ = 0

sum-of-products canonical forms

• Also known as disjunctive normal form

• Also known as minterm expansion

A B C F F’
0 0 0 0 1
0 0 1 1 0
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 0

F =

F’ = A’B’C’ + A’BC’ + AB’C’

F =  001      011      101       110       111

+ A’BC + AB’C + ABC’ + ABCA’B’C



Predicate or Propositional Function

– A function that returns a truth value, e.g.,

“x is a cat”

“x is prime”

“student x has taken course y”

“x > y”

“x + y = z” or Sum(x, y, z)

“5 < x”

Predicates will have variables or constants as 

arguments.

Predicate Logic statements with quantifiers

• ∀ x (Even(x) ∨ Odd(x))

• ∃ x (Even(x) ∧ Prime(x))

• ∀ x ∃ y (Greater(y, x) ∧ Prime(y))

• ∀ x (Prime(x) → (Equal(x, 2) ∨ Odd(x))

• ∃ x ∃ y(Equal(x, y + 2) ∧ Prime(x) ∧ Prime(y)) 

Even(x)

Odd(x)

Prime(x)

Greater(x,y)

Equal(x,y)

Domain:

Positive Integers

Cat(x)

Red(x)

LikesTofu(x)

English to Predicate Logic

• “Red cats like tofu” 

• “Some red cats don’t like tofu” 

De Morgan’s laws for Quantifiers

¬ ∃ x ∀ y  ( x ≥ y)

≡∀ x ¬ ∀y  ( x ≥ y)

≡∀ x  ∃ y ¬ ( x ≥ y)

≡∀ x  ∃ y    (y > x)

“There is no largest integer”

“For every integer there is a larger integer”

¬∀x  P(x) ≡ ∃x ¬P(x)

¬ ∃x P(x) ≡ ∀x ¬P(x)



Proofs

• Start with hypotheses and facts

• Use rules of inference to extend set of facts

• Result is proved when it is included in the set

Fact 1

Fact 2

Hypothesis 3

Hypothesis 2

Hypothesis 1

Statement

Statement

Result

Simple Propositional Inference Rules

Excluded middle plus two inference rules per binary 

connective, one to eliminate it and one to introduce it

p ∧ q

∴ p, q

p, q   

∴ p ∧ q 

p              x

∴ p ∨ q, q ∨ p
p ∨ q , ¬p

∴ q

p, p → q

∴ q

p ⇒ q  

∴ p → q
Direct Proof Rule
Not like other rules

Inference rules for quantifiers

∴ ∃x P(x)

∀x P(x)        

∴ ∀x P(x)

∃x P(x)               

* in the domain of P 

P(c) for some c

∴ P(a) for any a

“Let a be anything*”...P(a)

∴ P(c) for some special** c

** By special, we mean that c is a 

name for a value where P(c) is true. 

We can’t use anything else about that 

value, so c has to be a NEW variable!

even and odd

• Prove: “The square of every odd number is odd”

English proof of: ∀x (Odd(x)→Odd(x2))

Let x be an odd number.

Then x=2k+1 for some integer k (depending on x)

Therefore x2=(2k+1)2= 4k2+4k+1=2(2k2+2k)+1.

Since 2k2+2k is an integer, x2 is odd.   �

Even(x) ≡ ∃∃∃∃y  (x=2y)     

Odd(x) ≡ ∃∃∃∃y  (x=2y+1)

Domain: Integers



Definitions

• A and B are equal if they have the same elements

• A is a subset of B if every element of A is also in B

• Note:

A = B  ≡ ∀ x (x ∈ A ↔ x ∈ B)

A ⊆ B ≡ ∀ x (x ∈ A → x ∈ B)

(� = �) ≡≡≡≡ (� ⊆ �)	∧ (� ⊆ �)

Set Operations


 ∪ � = {	� ∶ � ∈ 
 ∨ �	 ∈ �	 }


 ∩ � = {	� ∶ � ∈ 
 ∧ � ∈ � }


	\	� = {	� ∶ � ∈ 
 ∧ � ∉ � }

Union

Intersection

Set Difference


⊕ � = {	� ∶ � ∈ 
 ⊕ � ∈ � }


	� = 	� ∶ � ∉ 
	
(with respect to universe U)                   

Symmetric

Difference

Complement

Empty Set, Power set, Cartesian Product

• Power set of a set A = set of all subsets of A

� 
 = {	� ∶ � ⊆ 
	}

� Days = {	∅,	

� ,  , ! ,	

�, ,  , ! , �, ! ,	

�, , ! 			}

e.g.  Days	=	{�, , !}

e.g. � ∅ =	?

Bitwise Operations

01101101                Java: z=x|y

∨∨∨∨ 00110111
01111111              

00101010 Java: z=x&y

∧∧∧∧ 00001111
00001010  

01101101                Java: z=x^y

⊕⊕⊕⊕ 00110111
01011010



One-Time Pad

• Alice and Bob privately share random n-bit vector K 

– Eve does not know K

• Later, Alice has n-bit message m to send to Bob

– Alice computes  C = m ⊕ K

– Alice sends C to Bob

– Bob computes m = C ⊕ K which is (m ⊕ K) ⊕ K

• Eve cannot figure out m from C unless she can 

guess K

division theorem

Let a be an integer and d a positive integer.  

Then there are unique integers q and r, with 

0 ≤ r < d, such that a = dq + r.

q = a div d r = a mod d

Arithmetic, mod 7

a +7 b = (a + b) mod 7

a ×7 b = (a × b) mod 7

+ 0 1 2 3 4 5 6

0 0 1 2 3 4 5 6

1 1 2 3 4 5 6 0

2 2 3 4 5 6 0 1

3 3 4 5 6 0 1 2

4 4 5 6 0 1 2 3

5 5 6 0 1 2 3 4

6 6 0 1 2 3 4 5

X 0 1 2 3 4 5 6

0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6

2 0 2 4 6 1 3 5

3 0 3 6 2 5 1 4

4 0 4 1 5 2 6 3

5 0 5 3 1 6 4 2

6 0 6 5 4 3 2 1

modular arithmetic

Let a and b be integers, and m be a positive integer.  

We say a is congruent to b modulo m if m divides a – b.  

We use the notation a ≡ b (mod m) to indicate that a is 

congruent to b modulo m.

Let a and b be integers, and let m be a positive integer.  

Then a ≡ b (mod m) if and only if a mod m = b mod m.

Let m be a positive integer.  If a ≡ b (mod m) and     

c ≡ d (mod m), then

a + c ≡ b + d (mod m)    and      

ac ≡ bd (mod m)

Let a and b be integers, and let m be a positive integer.  

Then a ≡ b (mod m) if and only if 

a mod m = b mod m.



Two’s Complement Representation

n bit signed integers, first bit will still be the sign bit

Suppose 0 ≤ � < 2'(), 

� is represented by the binary representation of �

Suppose 0 ≤ � ≤ 2'(), 

−� is represented by the binary representation of 2' − �

99 = 64 + 32 + 2 + 1
18 = 16 + 2

For n = 8:
99:    0110 0011
-18:    1110 1110

Key property: Twos complement representation of any number y 
is equivalent to y mod 2n so arithmetic works mod 2n

hashing

• Map values from a large domain, 0…M-1 in 

a much smaller domain, 0…n-1

• Index lookup

• Test for equality

• Hash(x) = x mod p  

– (or Hash(x) = (ax + b) mod p)

• Often want the hash function to depend on 

all of the bits of the data

– Collision management

modular exponentiation mod 7

X 1 2 3 4 5 6

1 1 2 3 4 5 6

2 2 4 6 1 3 5

3 3 6 2 5 1 4

4 4 1 5 2 6 3

5 5 3 1 6 4 2

6 6 5 4 3 2 1

a a1 a2 a3 a4 a5 a6

1 1 1 1 1 1 1

2 2 4 1 2 4 1

3 3 2 6 4 5 1

4 4 2 1 4 2 1

5 5 4 6 2 3 1

6 6 1 6 1 6 1

Repeated Squaring – small and fast

Since   a mod m ≡ a (mod m)  for any  a

we have  a2 mod m = (a mod m)2 mod m

and          a4 mod m = (a2 mod m)2 mod m

and          a8 mod m = (a4 mod m)2 mod m

and          a16 mod m = (a8 mod m)2 mod m

and          a32 mod m = (a16 mod m)2 mod m

Can compute ak mod m for k=2i in only i steps



Primality

An integer p greater than 1 is called prime if the 

only positive factors of p are 1 and p.

A positive integer that is greater than 1 and is not 

prime is called composite.

Fundamental Theorem of Arithmetic

Every positive integer greater than 1 has a 

unique prime factorization

48 =  2 • 2 • 2 • 2 • 3

45,523 = 45,523

321,950 = 2 • 5 • 5 • 47 • 137

1,234,567,890 = 2 • 3 • 3 • 5 • 3,607 • 3,803

Euclid’s Theorem

There are an infinite number of primes.

Proof by contradiction:

Suppose that there are only a finite number of 

primes: +), +,, … , +'

GCD and Factoring

a = 23 • 3 • 52 • 7 • 11 = 46,200

b = 2 • 32 • 53 • 7 • 13 = 204,750

GCD(a, b) = 2min(3,1) • 3min(1,2) • 5min(2,3) • 7min(1,1) • 11min(1,0) • 13min(0,1)

Factoring is expensive!    

Can we compute GCD(a,b) without factoring?

Euclid’s Algorithm

GCD(x, y) = GCD(y, x mod y)

int GCD(int a, int b){ /* a >= b, b > 0 */

int tmp;

while (b > 0) {

tmp = a % b;

a = b;

b = tmp;

}

return a;

}

Example: GCD(660, 126)



Extended Euclidean algorithm

• Can use Euclid’s Algorithm to find ., / such that

gcd 3, 4 = .3 + /4

• e.g.  gcd(35,27):  35 = 1 • 27 + 8      35 - 1 • 27 = 8

27= 3 • 8 + 3           27- 3 • 8 = 3

8 = 2 • 3 + 2 8 - 2 • 3 = 2

3 = 1 • 2 + 1           3 - 1 • 2 = 1 

2 = 2 • 1 + 0  

• Substitute back from the bottom                      

1= 3 - 1 • 2 =  3 – 1 (8 - 2 • 3) = (-1) • 8 + 3 • 3

= (-1) • 8 + 3 (27- 3 • 8 ) =   3 • 27 + (-10) • 8        

= 3 • 27 + (-10) • (35 - 1 • 27 ) = (-10) • 35 + 13 • 27

Solving Modular Equations

Solving 3� ≡ 4	(mod	9) for unknown � when 

gcd 3,9 = 1.

1. Find . such that .3 + /9 = 1

2. Compute 3() = .	mod	9, the multiplicative 

inverse of 3 modulo 9

3. Set � = 3() ⋅ 4 	mod	9

Mathematical Induction

1. Prove P(0)

2. Let k be an arbitrary integer ≥ 0

3. Assume that P(k) is true

4.  ...

5.  Prove P(k+1) is true

6. P(k) → P(k+1)                         Direct Proof Rule

7. ∀ k (P(k) → P(k+1))                 Intro ∀ from 2-6

8. ∀ n P(n)                                   Induction Rule 1&7

Base CaseBase CaseBase CaseBase Case

Inductive Inductive Inductive Inductive 

HypothesisHypothesisHypothesisHypothesis

Inductive Inductive Inductive Inductive 

StepStepStepStep

ConclusionConclusionConclusionConclusion

<(0)

∀	=	(<(=) 	→ 	<(= + 1))

∴	∀	?	<(?)

strong induction

< 0

∀=	 < 0 ∧ < 1 ∧ < 2 ∧ ⋯∧ < = → < = + 1

∴ ∀?	<(?)

1. By induction we will show that <(?)	is true for every ? ≥ 0

2. Base Case: Prove <(0)

3. Inductive Hypothesis: 

Assume that for some arbitrary integer =	 ≥ 	0,  <(C) is true 

for every C from 0 to =

4. Inductive Step: 

Prove that <(= + 1)	is true using the Inductive Hypothesis 

(that <(C) is true for all values ≤	=)

5. Conclusion: Result follows by induction



5 Steps To Inductive Proofs In English

Proof: Proof: Proof: Proof: 

1. “We will show that P(n) is true for every n ≥ 0 by 
Induction.”

2. “Base Case:” Prove P(0)

3. “Inductive Hypothesis:”

Assume P(k) is true for some arbitrary integer k ≥ 0”   

4. “Inductive Step:” Want to prove that P(k+1) is true:

Use the goal to figure out what you need. 

Make sure you are using I.H. and point out where 
you are using it.  (Don’t assume P(k+1) !!)

5. “Conclusion: Result follows by induction”

Strong Induction

Follows from ordinary induction applied to 

	D ? = 	< 0 	∧	< 1 	∧	< 2 	∧⋯∧	<(?)

< 0

∀=	 < 0 ∧ < 1 ∧ < 2 ∧ ⋯∧ < = → < = + 1

∴ ∀?	<(?)

strong induction english proofs

1. By induction we will show that <(?)	is true for 

every ? ≥ 0

2. Base Case: Prove <(0)

3. Inductive Hypothesis: 

Assume that for some arbitrary integer =	 ≥ 	0,  

<(C) is true for every C from 0 to =

4. Inductive Step: 

Prove that <(= + 1)	is true using the Inductive 

Hypothesis (that <(C) is true for all values ≤	=)

5. Conclusion: Result follows by induction

recursive definitions of functions

• !(0) 	= 	0; 	!(?	 + 	1) 	= 	!(?) 	+ 	1	for all ? ≥ 0

• F 0 = 	1; 	F ?	 + 	1 = 		2 × F(?)		for all	? ≥ 0

• 0! 	= 	1;		 ? + 1 ! 	= 	 ? + 1 × ?!	for all	? ≥ 0

• I(0) 	= 	1; 		I(?	 + 	1) 	= 	2J ' 		for all ?	≥	0



Strings

• An alphabet ΣΣΣΣ is any finite set of characters

• The set ΣΣΣΣ**** of strings over the alphabet ΣΣΣΣ is 

defined by

– Basis: Basis: Basis: Basis: ℇ ∈ Σ*  (ℇ is the empty string)

– Recursive:  Recursive:  Recursive:  Recursive:  if L ∈ Σ*, 3 ∈ Σ, then L3 ∈ Σ*

Function Definitions on Recursively Defined Sets

Length:

len (ℇ) = 0;

len (L3) = 1 + len(L); for L ∈ Σ∗, 3 ∈ Σ

Reversal:

ℇO = ℇ

L3 O = 3LO	 for L ∈ Σ*, 3 ∈ Σ

Concatenation:

�	 • ℇ = 	�	for �	∈ Σ*

�	 • 	L3	= (�	 • 	L)3 for �,L	∈	Σ*, 3	∈	Σ

Rooted Binary Trees

• Basis:Basis:Basis:Basis: •  is a rooted binary tree

• Recursive step: Recursive step: Recursive step: Recursive step: 

If             and            are rooted binary trees,         

then so is:   

T1 T2

T1
T2

Structural Induction

How to prove ∀	� ∈	Q,	<(�)	is true:

Base Case: Show that <(R) is true for all specific 
elements R of Q mentioned in the Basis step

Inductive Hypothesis:  Assume that < is true for some 
arbitrary values of each of the existing named 
elements mentioned in the Recursive step

Inductive Step: Prove that <(L) holds for each of the 
new elements L constructed in the Recursive step
using the named elements mentioned in the Inductive 
Hypothesis

Conclude that ∀	� ∈	Q,	<(�)	



Function Definitions on Recursively Defined Sets

Length:

len(ℇ) = 0

len(wa) = 1 + len(w) for w ∈	ΣΣΣΣ****, a ∈	ΣΣΣΣ

Reversal:

ℇR = ℇ

(wa)R = awR for w ∈	ΣΣΣΣ****, a ∈	ΣΣΣΣ

Concatenation:

x • ℇ = x for x ∈ ΣΣΣΣ****

x • wa = (x • w)a for x ∈	ΣΣΣΣ****, a ∈	ΣΣΣΣ

Number of c’s in a string:

#c(ℇ) = 0

#c(wc) = #c(w) + 1 for w ∈	ΣΣΣΣ****

#c(wa) = #c(w) for w ∈	ΣΣΣΣ****, a ∈	ΣΣΣΣ, a ≠ c

Regular Expressions

Regular expressions over Σ

• Basis:

∅∅∅∅, εεεε are regular expressions

a is a regular expression for any a ∈ Σ

• Recursive step:

– If A and B are regular expressions then so are:

(A ∪ B)

(AB)

A*

54

regular expressions

• 0*    0*    0*    0*    

• 0*1*0*1*0*1*0*1*

• (0 0 0 0 ∪ 1111)* * * * 

• (0*1*0*1*0*1*0*1*)****

• (0 0 0 0 ∪ 1111)* 0110 * 0110 * 0110 * 0110 (0 0 0 0 ∪ 1111)****

• (0 0 0 0 ∪ 1111)* * * * (0110011001100110 ∪ 100100100100)(0 0 0 0 ∪ 1111)****

Examples

• 0*   0*   0*   0*   

• 0*1*0*1*0*1*0*1*

• (0 0 0 0 ∪ 1111)0000(0 0 0 0 ∪ 1111)0000

• (0*1*0*1*0*1*0*1*)****

• (0 0 0 0 ∪ 1111)* 0110 * 0110 * 0110 * 0110 (0 0 0 0 ∪ 1111)****

• (00 00 00 00 ∪ 11111111)* * * * (01010010100101001010 ∪ 10001100011000110001)(0 0 0 0 ∪ 1111)****

56



Context-Free Grammars

Example: S → 0S0 | 1S1 | 0 | 1 | ε

Example:      S → 0S | S1 | ε

Context-Free Grammars

Grammar for 0'1': ? ≥ 0
(all strings with same # of 0’s and 1’s with all 0’s before 1’s)

Example:       S S S S → (S(S(S(S) ) ) ) | SSSSSSSS | ε

building precedence in simple arithmetic expressions

• E – expression  (start symbol)

• T – term   F – factor   I – identifier  N - number

E → T | E+T

T → F | F∗T

F → (E) | I | N

I → x | y | z

N → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

definitions for relations

Let A and B be sets,  

A binary relation from A to B is a subset of A × B

Let A be a set,

A binary relation on A is a subset of A × A

R is reflexive iff (a,a) ∈ R for every a ∈ A

R is symmetric iff (a,b) ∈ R implies (b, a)∈ R

R is antisymmetric iff (a,b) ∈ R and a ≠ b implies (b,a) ∉ R

R is transitive iff (a,b)∈ R and (b, c)∈ R implies (a, c) ∈ R

Let R be a relation on A



Combining Relations

Let R be a relation from A to B.

Let S be a relation from B to C.

The composition of R and S,  S ∘ R is the relation 

from A to C defined by:

S ∘ R = {(a, c) | ∃ b such that (a,b)∈ R and (b,c)∈ S}

Intuitively, a pair is in the composition if there is a 

“connection” from the first to the second.

Relations

(a,b)∈ Parent:  b is a parent of a

(a,b)∈ Sister:  b is a sister of a

Aunt = Sister ° Parent

Grandparent = Parent ° Parent

R2 = R ° R = {(a, c) | ∃ b such that (a,b)∈ R and 
(b,c)∈ R}

R0 = {(a,a) | a ∈ A}

R1 = R

Rn+1 = Rn ° R

S ° R = {(a, c) | ∃ b such that (a,b)∈ R and (b,c)∈ S}

n-ary relations

Student_ID Name GPA

328012098 Knuth 4.00

481080220 Von Neuman 3.78

238082388 Russell 3.85

238001920 Einstein 2.11

1727017 Newton 3.61

348882811 Karp 3.98

2921938 Bernoulli 3.21

2921939 Bernoulli 3.54

Student_ID Major

328012098 CS

481080220 CS

481080220 Mathematics

238082388 Philosophy

238001920 Physics

1727017 Mathematics

348882811 CS

1727017 Physics

2921938 Mathematics

2921939 Mathematics

Let A1, A2, …, An be sets.  An n-ary relation on 

these sets is a subset of A1× A2× . . . × An.

matrix representation for relations

Relation R on  A={a1, … ap}  

{(1, 1), (1, 2),  (1, 4),  (2,1),  (2,3), (3,2), (3, 3) (4,2) (4,3)}

1 1 0 1

1 0 1 0

0 0 1 0

0 1 1 0



representation of relations

Directed Graph Representation   (Digraph)

{(a, b),  (a, a),  (b, a), (c, a),  (c, d),  (c, e) (d, e) }

a

d

e

b c

Connectivity In Graphs

Let R be a relation on a set A.  The connectivity relation R* 

consists of the pairs (a,b) such that there is a path from a to b

in R.

Note:  The Rosen text uses the wrong definition of this quantity.

What the text defines (ignoring k=0) is usually called R+

Two vertices in a graph are connected iff there is a path between 

them.

Let R be a relation on a set A.  There is a path of length k from 

a to b if and only if (a,b) ∈ Rk

Finite State Machines

• States

• Transitions on inputs

• Start state and final states

• The language recognized by a machine is the set 

of strings that reach a final state

s0 s2 s3s1

111

0,1

0

0

0State 0 1

s0 s0 s1

s1 s0 s2

s2 s0 s3

s3 s3 s3

accept strings with odd # of 1’s and odd # of 0’s

s0

s2 s3

s1

1

1

1

1

0

0

0

0



The beginning versus the end

001 011

111

110

101010000

100

1

1
1 0

1

1

1

1

00
0

1

0

0

00

s0 s2 As1

10,10,1

0,1

R

0 0,1

product construction

– Combining FSMs to check two properties at 

once

New states record states of both FSMs

s0 s1

0,1

2

2

0,1

t0 t2

t1

2

2

2

0

0

0

1 1

1

s0

t0

s1

t0

s1

t2

s0

t1

s0

t2

s1

t1

2

2

2

2

2

2

1

1

1

1

1

1
0

0 0

0 0

0

State Machines with Output

Input Output

State L R

s1 s1 s2 Beep

s2 s1 s3

s3 s2 s4

s4 s3 s4 Beep

S3
S4

[Beep]

S1

[Beep]
S2

R

L

R

L

R

L

L

R

“Tug-of-war”

Vending Machine

Enter 15 cents in dimes or nickels

Press S or B for a candy bar



Vending Machine, v1.0

0’  
[B]

5 10

15

Adding additional “unexpected” transitions

15’

[N]

0

0” 

[S]

N

N

N

N

N

B

D

D

D

D

D B

S

S

15” 

[D]S

B

B,S

B,S

B,S

B,S B,S

N

N

N

D

D

D

state minimization

Finite State Machines with output at states

2

1

3

0

0

1

32

2

1

3
0

2

0

3

0

3
2

1

2

3

1

0

S0

[1]

S2

[1]

S4

[1]

S1

[0]

S3

[0]

S5

[0]

1

2

1

3

0

0

1

3

2

2
0

0

3

1,2

S0

[1]

S2

[1]

S1

[0]

S3

[0]

1,3

state minimization example

state 
transition table

present next state        output
state 0 1 2 3

S0 S0 S1 S2 S3 1
S1 S0 S3 S1 S5 0
S2 S1 S3 S2 S4 1
S3 S1 S0 S4 S5 0
S4 S0 S1 S2 S5 1
S5 S1 S4 S0 S5 0

2

1

3

0

0

1

32

2

1

3
0

2

0

3

0

3
2

1

2

3

1

0

S0
[1]

S2
[1]

S4
[1]

S1
[0]

S3
[0]

S5
[0]

1

Put states into groups based on their

outputs (or whether they are final states

or not)

minimized machine

state 
transition table

present next state        output
state 0 1 2 3

S0 S0 S1 S2 S3 1
S1 S0 S3 S1 S3 0
S2 S1 S3 S2 S0 1
S3 S1 S0 S0 S3 0

2

1

3

0

0

1

3

2

2

0

0

3

1,2

S0
[1]

S2
[1]

S1
[0]

S3
[0]

1,3



another way to look at DFAs

s0 s2 s3s1

111

0,1

0

0

0

Lemma:  x is in the language recognized by a DFA iff

x labels a path from the start state to some final state

Definition: The label of a path in a DFA is the 

concatenation of all the labels on its edges in order

nondeterministic finite automaton (NFA)

• Graph with start state, final states, edges labeled 

by symbols (like DFA) but

– Not required to have exactly 1 edge out of each state 

labeled by each symbol--- can have 0 or >1

– Also can have edges labeled by empty string εεεε

• Definition:  Definition:  Definition:  Definition:  x is in the language recognized by an 

NFA if and only if x labels a path from the start 

state to some final state

s0 s2 s3s1

111

0,10,1

nondeterministic finite automaton

s0 s2 s3s1

0,10,11

0,1

Accepts strings with a 1 three positions from the 

end of the string

Building an NFA from a Regular Expression

(01 ∪∪∪∪1)*0

0
ɛɛɛɛ

ɛɛɛɛ

ɛɛɛɛ

ɛɛɛɛ

0

1

1

ɛɛɛɛ

ɛɛɛɛ

ɛɛɛɛ

ɛɛɛɛ

ɛɛɛɛ



NFA to DFA: subset construction

c

a

b

0

λλλλ

0,1

1

0

NFA

a,b

DFA

0

c 

1

b 

b,c

1

0

a,b,c

∅∅∅∅

1

0,1

0

0

1

1
0

Languages and Machines!

All

Context-Free

Regular

Finite

0*
DFA

NFA

Regex

??? Main Event:Main Event:Main Event:Main Event:

Prove there is 

a context-free

language 

that isn’t 

regular.

{001, 10, 12}

B = {binary palindromes} can’t be recognized by any DFA

Consider the infinite set of strings

S={1, 01, 001, 0001, 00001, ...} = {0n1 : n ≥ 0}

Suppose we are given an arbitrary DFA MMMM.

• Goal: Show that some x x x x ∈ BBBB and some y y y y ∉ BBBB both must end 

up at the same state of MMMM

Since SSSS is infinite we know that two different strings in SSSS must 

land in the same state of MMMM, call them 0000i1111 and 0000jjjj1111 for i≠j.

• That also must be true for 0000 i1z1z1z1z and 0000j1z1z1z1z for any z z z z ∈ {0000,1111}* !!!!

In particular, with zzzz=0000i we get that 0000i10101010i and 0000j10101010i end up at the 

same state of MMMM.  Since 0000i10101010i ∈ B B B B and 0000j10101010i ∉ B B B B (because i≠j)       

M does not recognize BBBB.     ∴ no DFA can recognize BBBB.

0i1
?

0j1

Showing a Language L is not regular

1. Find an infinite set SSSS={ssss0000,ssss1111,...,ssssnnnn,...} of string prefixes that you 
think will need to be remembered separately

2. “Let MMMM be an arbitrary DFA.    Since SSSS is infinite and MMMM is finite 
state there must be two strings ssssiiii and ssssjjjj in SSSS for some iiii ≠jjjj that 
end up at the same state of MMMM.”

Note:   You don’t get to choose which two strings ssssiiii and ssssjjjj

3. Find a string tttt (typically depending on ssssiiii and/or ssssjjjj) such that

ssssiiiitttt is in LLLL, and                             or ssssiiiitttt is not in LLLL, and

ssssjjjjtttt is not in L                                      L                                      L                                      L                                      ssssjjjjtttt is in L L L L 

4. “Since ssssiiii and ssssjjjj both end up at the same state of MMMM, and we 
appended the same string tttt, both ssssiiiitttt and ssssjjjjtttt end at the same 
state of M.   M.   M.   M.   Since ssssiiiitttt ∈ L L L L and ssssjjjjtttt ∉ L, L, L, L, M M M M does not recognize LLLL.”    

5. “Since MMMM was arbitrary, no DFA recognizes LLLL.”



Pattern Matching DFA

pattern p=x y x y y x y x y x x

Languages and Machines!

All

Context-Free

Regular

Finite

0*
DFA

NFA

Regex

Binary Palindromes

Are there Are there Are there Are there 

things Java things Java things Java things Java 

can’t do?can’t do?can’t do?can’t do?

{001, 10, 12}

Java

cardinality

• A set S is countable iff we can write it as       

S={s1, s2, s3, ...} indexed by ℕℕℕℕ

• Set of integers is countable

– {0, 1, -1, 2, -2, 3, -3, 4, . . .}

• Set of rationals is countable

– “dovetailing”

• Σ* is countable

– {0,1}* = 

{0,1,00,01,10,11,000,001,010,011,100,101,...}

• Set of all (Java) programs is countable

1/1 1/2 1/3 1/4 1/5 1/6 1/7 1/8 ...

2/1 2/2 2/3 2/4 2/5 2/6 2/7 2/8 ...

3/1 3/2 3/3 3/4 3/5 3/6 3/7 3/8 ...

4/1 4/2 4/3 4/4 4/5 4/6 4/7 4/8 ...

5/1 5/2 5/3 5/4 5/5 5/6 5/7 ...

6/1 6/2 6/3 6/4 6/5 6/6 ...

7/1 7/2 7/3 7/4 7/5 ....

... ... ... ... ...

1

5

5

1

5

5

5

5

...

Flipped Diagonal Number D

1 2 3 4 5 6 7 8 9 ...

r1 0. 5 0 0 0 0 0 0 0 ... ...

r2 0. 3 3 3 3 3 3 3 3 ... ...

r3 0. 1 4 2 8 5 7 1 4 ... ...

r4 0. 1 4 1 5 9 2 6 5 ... ...

r5 0. 1 2 1 2 2 1 2 2 ... ...

r6 0. 2 5 0 0 0 0 0 0 ... ...

r7 0. 7 1 8 2 8 1 8 2 ... ...

r8 0. 6 1 8 0 3 3 9 4 ... ...

... .... ... .... .... ... ... ... ... ... ...

Flipping Rule: 

If digit is 5, make it 1

If digit is not 5, make it 5

D=   0.



The Halting Problem

Given:  Given:  Given:  Given:  ---- CODE(P) for any program P

- input x

Output:   Output:   Output:   Output:   true if P halts on input x

false if P does not halt on input x

TheoremTheoremTheoremTheorem (Turing): There is no program that 

solves the halting problem 

“The halting problem is undecidable”

H solves the halting problem implies that                              
H(CODE(D),x) is true iff D(x) halts,  H(CODE(D),x) is false iff not

Suppose D(CODE(D)) halts.

Then, we must be in the second case of the if.

So, H(CODE(D), CODE(D)) is false 

Which means D(CODE(D)) doesn’t halt

Suppose D(CODE(D)) doesn’t halt.

Then, we must be in the first case of the if.

So, H(CODE(D), CODE(D)) is true.

Which means D(CODE(D)) halts. 

public static void D(x) {

if (H(x,x) == true) {

while (true); /* don’t halt */

}

else {

return; /*    halt    */

}

}

Does D(CODE(D)) halt?

Contradiction!

<P1> <P2> <P3> <P4> <P5> <P6> ....

Some possible inputs x

P1

P2

P3

P4

P5

P6

P7

P8

P9

.

.

0 1     1     0    1     1    1     0      0      0    1  ...

1     1 0     1    0     1    1     0      1      1    1  ...

1     0     1 0    0     0    0     0      0      0    1  ...

0     1     1  0 1     0    1     1      0      1    0  ...

0     1     1     1    1 1    1     0      0      0   1  ...

1     1     0     0    0     1 1     0      1      1   1  ...

1     0     1     1    0     0    0 0      0      0    1  ...

0     1     1     1    1     0    1     1 0      1   0  ...

.     .   .  .   .    .   .   .   .    .    .       .  

.     .   .  .   .    .   .   .   .    .    .       .  

(P,x) entry is 1 if program P halts on input x

and 0 if it runs forever

D behaves like 

flipped diagonal

1

0

0

1

0

0

1
0

But first another hard halting-related problem

Halting Problem:Halting Problem:Halting Problem:Halting Problem:

Given:  Given:  Given:  Given:  ---- CODE(P) for any program P

- input x

Output:   Output:   Output:   Output:   true if P halts on input x

false if P does not halt on input x

HaltsNoInputHaltsNoInputHaltsNoInputHaltsNoInput Problem:Problem:Problem:Problem:

Given:  Given:  Given:  Given:  ---- CODE(Q) for any program Q

OutputOutputOutputOutput:  :  :  :  true if Q halts without reading any input

false if Q reads input or runs forever without  
reading any input.



Suppose that hypothetical program AAAA solves 

HaltsNoInputHaltsNoInputHaltsNoInputHaltsNoInput problem.   Combine with Hardcoder:

Showing there is no program solving HaltsNoInputHaltsNoInputHaltsNoInputHaltsNoInput

AAAA

xCODE(P)

Hardcoder

CODE(Q)
H’H’H’H’

HHHH’ ’ ’ ’ outputs true on inputs

CODE(P)CODE(P)CODE(P)CODE(P) and xxxx

iff AAAA outputs true 

on input CODE(Q) by diagram

iff Q() reads no input

and (always) halts by property of A

iff P(x) halts by definition of Hardcoder

If AAAA existed then H’H’H’H’ would solve the

Halting Problem:    Impossible

Showing EQUIVEQUIVEQUIVEQUIV is Undecidable 

Consider the set:

EQUIVEQUIVEQUIVEQUIV = {(CODE(P), CODE(R)): P, R are programs, P(x) = R(x) for 
all inputs x}

Step 1: Construct P:

public static boolean P() {return true;}

Step 2: Construct R:

Step a: Replace return type of Q with boolean

Step b: Replace all return values with true

Step c: Add “return true;” to the end of the program

Call this program Call this program Call this program Call this program RRRR

Answering with ANS

would solve HaltsNoInput!>>> ANS

EQUIV

CODE(Q)

(CODE(P),CODE(R))

Question: Does Q() halt?

Question: Are P and R Equivalent?Combined program outputs truetruetruetrue

iff P and R are equivalent by diagram

iff R always returns true by defn of PPPP

iff Q halts by construction of RRRR from QQQQ

Turing machines

ChurchChurchChurchChurch----Turing ThesisTuring ThesisTuring ThesisTuring Thesis

Any reasonable model of computation that 

includes all possible algorithms is equivalent in 

power to a Turing machine

• Evidence

– Intuitive justification

– Huge numbers of equivalent models to TM’s 

based on radically different ideas

what is a Turing machine?



what is a turing machine? sample Turing machine

_ _ 1 1 0 1 1 _ _

_ 0 1

s1 (1,s3) (1,s2) (0,s2)

s2 (H,s3) (R,s1) (R,s1)

s3 (H,s3) (R,s3) (R,s3)

Turing’s big idea: machines as data

• Original Turing machine definition

– A different “machine” M for each task

– Each machine MMMM is defined by a finite set of 
possible operations on finite set of symbols

M has a finite description as a sequence of 
symbols, its “code” denoted <MMMM>

• You already are used to this idea with the 
notion of the program code or text but this 
was a new idea in Turing’s time.

Turing’s idea: a Universal Turing Machine

• A Turing machine interpreter  UUUU
– On input <MMMM> and its input xxxx, UUUU outputs the same thing 

as MMMM does on input xxxx

– At each step it decodes which operation MMMM would have 

performed and simulates it.

• One Turing machine is enough

– Basis for modern stored-program computer

Von Neumann studied Turing’s UTM design

M
input

x
output

M(x) U
x output

M(x)
<<<<M>>>>



General phenomenon: can’t tell a book by its cover

and you can’t tell what a program does just by its 

code...

Rice’s Theorem: In general there is no way to tell

anything about the input/output (IIII/OOOO) behavior of a

program PPPP just given it code!

Note: The statement above is not precise, and we didn’t prove it, so this

isn’t something you can use on homework or exams

Quick lessons

• Don’t rely on the idea of improved compilers 

and programming languages to eliminate 

major programming errors

– truly safe languages can’t possibly do general 

computation

• Document your code!!!!

– there is no way you can expect someone else to 

figure out what your program does with just 

your code ....since....in general it is provably 

impossible to do this!

That’s all folks!


