
Fall 2014
Lecture 29: Turing machines and more decidability

CSE 311: Foundations of Computing Proving that problem/set S is undecidable

• The main part is a programming task!

– Figure out how you could use a subroutine that 
decided S to build a program to decide one of 
the problems you already know is undecidable.

• You also need to show that your program 
would really solve the known problem

– The slides last class mostly focused on how to 
build that program but not on the correctness 
argument.

– The need to show correctness should guide your 
programming solution

Suppose that hypothetical program A solves 

HaltsNoInput problem.   Combine with Hardcoder:

Showing there is no program solving HaltsNoInput

A

xCODE(P)

Hardcoder

CODE(Q)
H’

H’ outputs true on inputs

CODE(P) and x

iff A outputs true 

on input CODE(Q) by diagram

iff Q() reads no input

and (always) halts by property of A

iff P(x) halts by definition of Hardcoder

If A existed then H’ would solve the

Halting Problem:    Impossible

Showing EQUIV is Undecidable 

Consider the set:

EQUIV = {(CODE(P), CODE(R)): P, R are programs, P(x) = R(x) for 
all inputs x}

Step 1: Construct P:

public static boolean P() {return true;}

Step 2: Construct R:

Step a: Replace return type of Q with boolean

Step b: Replace all return values with true

Step c: Add “return true;” to the end of the program

Call this program R

Answering with ANS

would solve HaltsNoInput!>>> ANS

EQUIV

CODE(Q)

(CODE(P),CODE(R))

Question: Does Q() halt?

Question: Are P and R Equivalent?Combined program outputs true

iff P and R are equivalent by diagram

iff R always returns true by defn of P

iff Q halts by construction of R from Q



Proving set S is undecidable

1. Assume that there is some (hypothetical) program that 
decides S

2. Choose some known undecidable set K

3. Show how to build a program to decide K that uses the 
program for S as a subroutine

– Often you only need one call to S and can return the same 
answer

4. Prove that your algorithm outputs true on its input if 
and only if that input is in K, using the correctness of 
the hypothetical program for S

– If you made one call and returned the same answer you 
just need to show that the input to the program is in K iff
the value in the call to the subroutine is in S.

5. “Since K is undecidable, the program deciding S can’t 
exist.  Therefore S is undecidable.”

Checking Division By Zero is undecidable

DivBy0={ (CODE(Q),x): Q executes a divide by 0

when run on input x}

Use Halts={(CODE(P),x): P halts on input x}

Let’s try this with one call using same answer

Want to transform CODE(P) into CODE(Q) s.t.

- Q does a divide by 0 on input x

iff P halts on input x

>>> ANS

DivBy0

Transform

xCODE(P) 

CODE(Q) 

Checking Division By Zero is undecidable

Want Q does a divide by 0 on input x
iff P halts on input x

Ideas for transformation from P to Q:

• Put a divide by 0 in place of each return statement 
of P and at the end of P

– ensures that if P halts there will be a divide by 0 in Q

• Add a test before each original division in P to 
make sure that the divisor is not 0. If the divisor is 
0 then don’t do the division, print “error” and halt.

– ensures that the only divide by 0 in Q occurs when P
halts

Computers and algorithms: Programs and People

• Does Java (or any programming language) 
cover all possible computation? Every 
possible algorithm?

• There was a time when computers were 
people who did calculations on sheets 
paper to solve computational problems

• Computers as we known them arose from 
trying to understand everything these 
people could do



Recall: A brief history of reasoning

• 1900

– Hilbert's famous speech outlines goal: 
mechanize all of mathematics               

23 problems

• 1930’s

– Gödel, Turing show that Hilbert’s program 
is impossible.

Gödel’s Incompleteness Theorem

Undecidability of the Halting Problem 

Both use ideas from Cantor’s proof about reals & rationals

before Java…more from our brief history of reasoning

• 1930’s 

– How can we formalize what algorithms 

are possible?

Turing machines (Turing, Post)

basis of modern computers

Lambda Calculus (Church)

basis for functional programming

µ-recursive functions (Kleene)

alternative functional programming basis

All 

are

equivalent!

turing machines

Church-Turing Thesis

Any reasonable model of computation that 

includes all possible algorithms is equivalent in 

power to a Turing machine

• Evidence

– Intuitive justification

– Huge numbers of equivalent models to TM’s 

based on radically different ideas

components of Turing’s intuitive model of computation

• Finite Control
– Brain/CPU  that has only a finite # of possible 

“states of mind”

• Recording medium
– An unlimited supply of blank “scratch paper” on 

which to write & read symbols, each chosen from a 
finite set of possibilities

– Input also supplied on the scratch paper

• Focus of attention
– Finite control can only focus on a small portion of 

the recording medium at once

– Focus of attention can only shift a small amount at 
a time



Some quotes from Turing’s original paper

• Computing is normally done by writing certain symbols on paper.   We may suppose this paper is divided into 
squares like a child’s arithmetic book.   In elementary arithmetic the two-dimensional character of the paper 
is sometimes used. But such a use is always avoidable … the two-dimensional character of paper is no 
essential of computation.  I assume then that the computation is carried out on one-dimensional paper, i.e. 
on a tape divided into squares.

• I shall also suppose that the number of symbols which may be printed is finite. If we were to allow an infinity 
of symbols, then there would be symbols differing to an arbitrarily small extent.  The effect of this restriction 
of the number of symbols is not very serious.  It is always possible to use sequences of symbols in place of 
single symbols.  The differences from our point of view between the single and compound symbols is that the 
compound symbols,  if they are too lengthy, cannot be observed at one glance. This is in accordance with 
experience. We cannot tell at a glance whether 9999999999999999 and 999999999999999 are the 
same.

• The behavior of the computer at any moment is determined by  the symbols which he is observing, and his 
"state of mind“ at that moment.   We may suppose that there is a bound B to the number of symbols or 
squares which the computer can observe at one moment. If he wishes to observe more, he must use 
successive observations. We will also suppose that the number of states of mind which need be taken into 
account is finite. The reasons for this are of the same character as those which restrict the number of 
symbols. If we admitted an infinity of states of mind, some of them will be "arbitrarily close“ and will be 
confused. Again, the restriction is not one which seriously affects computation, since the use of more 
complicated states.

• [He then discusses simple operations that allow the computer to change one of the observed squares]

• …. the simple operations must include changes of distribution of observed squares.  The new observed 
squares must be immediately recognisable by the computer. I think it is reasonable to suppose that they can 
only be squares whose distance from the closest of the immediately previously observed squares does not 
exceed a certain fixed amount. Let us say at each of the new observed squares is within L squares of an 
immediately previously observed square.

what is a Turing machine?

what is a Turing machine?

• Recording medium
– An infinite read/write “tape” marked off into cells

– Each cell can store one symbol or be “blank”

– Tape is initially all blank except a few cells of the tape 
containing the input string

– Read/write head can scan one cell of the tape - starts on input

• In each step, a Turing machine
– Reads the currently scanned symbol

– Based on state of mind and scanned symbol

Overwrites symbol in scanned cell

Moves read/write head left or right one cell

Changes to a new state

• Each Turing Machine is specified by its finite set of rules

sample Turing machine

_ _ 1 1 0 1 1 _ _

_ 0 1

s1 (1,s3) (1,s2) (0,s2)

s2 (H,s3) (R,s1) (R,s1)

s3 (H,s3) (R,s3) (R,s3)



what is a Turing machine? turing machine ≡ ideal Java/C program

• Ideal Java/C programs
– Just like the Java/C you’re used to 

programming with, except you never run out of 
memory

Constructor methods always succeed

malloc in C never fails

• Equivalent to Turing machines except a lot 
easier to program !
– Turing machine definition is useful for breaking 

computation down into simplest steps

– We only care about high level so we use 
programs

Turing’s big idea: machines as data

• Original Turing machine definition

– A different “machine” M for each task

– Each machine M is defined by a finite set of 
possible operations on finite set of symbols

M has a finite description as a sequence of 
symbols, its “code” denoted <M>

• You already are used to this idea with the 
notion of the program code or text but this 
was a new idea in Turing’s time.

Turing’s idea: a Universal Turing Machine

• A Turing machine interpreter  U
– On input <M> and its input x, U outputs the same thing 

as M does on input x

– At each step it decodes which operation M would have 

performed and simulates it.

• One Turing machine is enough

– Basis for modern stored-program computer

Von Neumann studied Turing’s UTM design

M
input

x
output

M(x) U
x output

M(x)
<M>



General phenomenon: can’t tell a book by its cover

and you can’t tell what a program does just by its 

code...

Rice’s Theorem: In general there is no way to tell

anything about the input/output (I/O) behavior of a

program P just given it code!

Note: The statement above is not precise, and we didn’t prove it, so this

isn’t something you can use on homework or exams

Even harder problems

• With the halting problem, by using the Universal 
machine (a program interpreter) we can simulate P
and input x and always get the true answers correct

– we can’t be sure about answering false

• For other problems we can always answer false 
correctly but maybe not the true answers

• There are natural problems where you can’t even do 
that!

– The EQUIV problem is an example of this kind of even 
harder problem

Quick lessons

• Don’t rely on the idea of improved compilers 

and programming languages to eliminate 

major programming errors

– truly safe languages can’t possibly do general 

computation

• Document your code!!!!

– there is no way you can expect someone else to 

figure out what your program does with just 

your code ....since....in general it is provably 

impossible to do this!


