CSE 311: Foundations of Computing highlights

Fall 2014

* DFAs = Regular Expressions
Lecture 26: Pattern matching, Halting problem g P

— No need to know details of
NFAs—RegExpressions

DEFINE DOES ITHALT (PROGRAM):
t RETORN TRUE: * Method for proving no DFAs for languages
5 —eg {0"1":n 20}
THE BIG PICTORE SOLUTION {Binary palindromes}
To THE HALTING PROBLEM
pattern matching StiNgS=XYXXYXYXYYXYyXyXyyXyXyXxX

pattern p=XyXyyXxyXxyXxX
* Given

— a string, s, of n characters
— a pattern, p, of m characters
— usually m<<n
* Find
— all occurrences of the pattern p in the string s

* Obvious algorithm:
— try to see if p matches at each of the positions in s
stop at a failed match and try the next position
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Lots of wasted work
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(
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better pattern matching via finite automata

* Build a DFA for the pattern (preprocessing) of size
O(m)
— Keep track of the ‘longest match currently active’
— The DFA will have only m+1 states

* Run the DFA on the string n steps

» Obvious construction method for DFA will be O(m?2)
but can be done in O(m) time.

* Total O(m+n) time

building a DFA for the pattern

pattern p=xy xy y Xy xy x x
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preprocessing the pattern

pattern p=xy xy y Xy xy x x

y

preprocessing the pattern
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preprocessing the pattern
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X

preprocessing the pattern

pattern p=xy xy y Xy xy x x




generalizing

* Can search for arbitrary combinations of patterns
— Not just a single pattern
— Build NFA for pattern then convert to DFA ‘on the fly'.

Compare DFA constructed above with subset
construction for the obvious NFA.

Languages and Machines!

Are there
things Java

Context-Free

Binary Palindromes

Finite

{001, 10, 12}

An Assignment Too Simple for 142.

Students should write a Java program that...
— Prints “Hello” to the console
— Eventually exits

Gradelt, Practicelt, etc. need to grade the
students.

How do we write that grading program?

Follow Up Question

What does this program do?

e M <=1,
N % 2 (., +1,0): % == |
_&&! 2printf("%d\t", /), (.,

C+10) % >18& % < | 2 (
—_—) 1 +

H(_ /[ % %_))__<_*
+1 ):0;}main(){_(100,0,0);}

?_(




Sneak Peak

It turns out the simple autograder is
impossible to write...

And we’ll prove it!

Some Notation and Starting ldeas

We're going to be talking about Java code a
lot.

CODE (P) will mean “the code of the program P”

So, consider the following function:
public String P(String x) {
return new String(Arrays.sort(x.toCharArray());

}

What is P(CODE(P))?
“((0))..;AACPSSaaabceeggghiiiilnnnnnooprrrrrrrrrrrsssttttttuuwxxyy{}”

The Halting Problem

Given: - CODE(P) for any program P
-input x
Output: true if P halts on input x
false if P does not halt on input x

The Halting Problem

Given: - CODE(P) for any program P
-input x
Output: true if P halts on input x
false if P does not halt on input x

It turns out that it isn’t possible to write a
program that solves the Halting Problem.




Proof by contradiction

* Suppose that H is a Java program that solves the

Halting problem. Then we can write this program:
public static void D(x) {
if (H(x,x) == true) {
while (true); /* don’t halt */

}
else {

return; /* halt */
¥

* Does D(CODE(D)) halt?
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H solves the halting problem implies that
H(CODE(D),x) is true iff D(x) halts, H(CODE(D),x) is false iff not
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public static void D(x) {
if (H(x,x) == true) {

while (true); /* don’t halt */

Does D(CODE (D)) halt? .

else {
return; /* halt */

}

}

H solves the halting problem implies that
H(CODE(D),x) is true iff D(x) halts, H(CODE(D),x) is false iff not

Suppose D(CODE(D) ) halts.
Then, we must be in the second case of the if.

So, H(CODE (D), CODE(D) ) is false
Which means D(CODE (D) ) doesn’t halt

Suppose D(CODE (D) ) doesn’t halt.
Then, we must be in the first case of the if.

So, H(CODE (D), CODE(D)) is true. L
Which means D(CODE (D)) halts. Contradiction!

That’s it!

* We proved that there is no computer
program that can solve the Halting Problem.
— There was nothing special about Java

* This tells us that there is no compiler that
can check our programs and guarantee to
find any infinite loops they might have.

What's next?

* We showed: If some “hypothetical” subroutine
H existed that solved the Halting Problem then
it would let us build a program D that cannot
possibly exist
— We will use the same idea to show that programs

solving other problems are impossible, but we now
will be able to use that H cannot exist

* A key piece of the proof was considering what
a program does when given its own code as
input
— This was inspired by a method to compare the sizes

of infinite sets call diagonalization that we will
study next class




