CSE 311: Foundations of Computing highlights

Fall 2014

* DFAs = Regular Expressions
Lecture 26: Pattern matching, Halting problem g P

— No need to know details of
NFAs—RegExpressions

DEFINE DOES ITHALT (PROGRAM):
t RETORN TRUE: * Method for proving no DFAs for languages
5 —eg {0"1":n 20}
THE BIG PICTORE SOLUTION {Binary palindromes}
To THE HALTING PROBLEM
pattern matching StiNgS=XYXXYXYXYYXYyXyXyyXyXyXxX

pattern p=XyXyyXxyXxyXxX
* Given

— a string, s, of n characters
— a pattern, p, of m characters
— usually m<<n
* Find
— all occurrences of the pattern p in the string s

* Obvious algorithm:
— try to see if p matches at each of the positions in s
stop at a failed match and try the next position

StiNg S =Xy XXYXYXYYXYXYXYYyXyXyXX
XYXYYXYXYXX

StiNg S =Xy XXYXYXYYXYXYXYYyXyXyXX
XyXy
XYXYYXYXYXX

StiNg S =XYXXYXYXYYXYXYXYYyXyXyXX
XyXy
X

XYXYYXYXYXX

StiNg S =XYXXYXYyXYYXYXYXYYyXyXyXX
XyXy
X

Xy
XYXYYXYXYXX

StiNg S =XYXXYXYXYYXYXYXYYyXyXyXX
XyXy
X

StiNg S =XYXXYXYXYYXYXYXYYyXyXyXX
XyXxy
X

Xy
XYyxXyy
X

XYXYYXYXYXX

StiNg S =XYXXYXYyXYYXYXYXYYyXyXyXX

XyXy
X
Xy
XyXxyy
X
XYXYYXYXYXX

XYXYYXYXYXX

StiNg S =XYXXYXYXYYXYXYXYYyXyXyXX
XyXy
X
Xy
XyXxyy
X

XYXYYXYXYXX
X
XYXYYXYXYXX

StriNg S =Xy XXYXYXYYXYyXYyXYyyXyXyXX

XYyXYy
X
Xy
XyXyy
X
XYXYYXYXYyXX
X
Xy X
XYXYYXYXYyXX

StriNg S =XYXXYXYXYYyXYyXYyXYyyXyXyXX

XyXy
X
Xy
XyXxyy
X
XYXYYXYXYXX
X
Xy X
X
XYXYYXYXYyXX

StiNg S =XYXXYXYXYYXYXYXYYyXyXyXX

XyXy
X
Xy
XyXxyy
X
XYXYYXYXYXX
X
Xy X
X
X
XYXYYXYXYXX

StiNg S =XYXXYXYXYYXYXYXYYyXyXyXX

XYy Xy
X
Xy
XyXxyy
X
XYXYYXYXYXX
X
Xy X
X
X
XyXxXyy

XYXYYXYyXyXX

StiNg S =XYXXYXYXYYXYXYXYYyXyXyXX

XyXxy
X
Xy
Xyxyy
X
XYXYYXYyXYyXX
Worst-case time X YV X
O(mn) 2(/
X
Xyxyy
X
XYXYYXYyXYyXX

String S =Xy XXYXYXYYyXYyXyXyyXyXyXX
XyXxy

Lots of wasted work
XyXxXyy

XYXYYXYXYXX

(

XYXYYXYXYXX

better pattern matching via finite automata

* Build a DFA for the pattern (preprocessing) of size
O(m)
— Keep track of the ‘longest match currently active’
— The DFA will have only m+1 states

* Run the DFA on the string n steps

» Obvious construction method for DFA will be O(m?2)
but can be done in O(m) time.

* Total O(m+n) time

building a DFA for the pattern

pattern p=xy xy y Xy xy x x

—).-K—»—L»—K—»JL»AL»—X—»—L»—K—»—L»—K—»—X—@

preprocessing the pattern

pattern p=xy xy y Xy xy x x

y

preprocessing the pattern

pattern p=xy xy y Xy Xy x x

preprocessing the pattern

pattern p=xy xy y Xy xy x x

X

preprocessing the pattern

pattern p=xy xy y Xy xy x x

generalizing

* Can search for arbitrary combinations of patterns
— Not just a single pattern
— Build NFA for pattern then convert to DFA ‘on the fly'.

Compare DFA constructed above with subset
construction for the obvious NFA.

Languages and Machines!

Are there
things Java

Context-Free

Binary Palindromes

Finite

{001, 10, 12}

An Assignment Too Simple for 142.

Students should write a Java program that...
— Prints “Hello” to the console
— Eventually exits

Gradelt, Practicelt, etc. need to grade the
students.

How do we write that grading program?

Follow Up Question

What does this program do?

e M <=1,
N % 2 (., +1,0): % == |
_&&! 2printf("%d\t", /), (.,

C+10) % >18& % < | 2 (
—_—) 1 +

H(_ /[% %_))__<_*
+1):0;}main(){_(100,0,0);}

?_(

Sneak Peak

It turns out the simple autograder is
impossible to write...

And we’ll prove it!

Some Notation and Starting ldeas

We're going to be talking about Java code a
lot.

CODE (P) will mean “the code of the program P”

So, consider the following function:
public String P(String x) {
return new String(Arrays.sort(x.toCharArray());

}

What is P(CODE(P))?
“((0))..;AACPSSaaabceeggghiiiilnnnnnooprrrrrrrrrrrsssttttttuuwxxyy{}”

The Halting Problem

Given: - CODE(P) for any program P
-input x
Output: true if P halts on input x
false if P does not halt on input x

The Halting Problem

Given: - CODE(P) for any program P
-input x
Output: true if P halts on input x
false if P does not halt on input x

It turns out that it isn’t possible to write a
program that solves the Halting Problem.

Proof by contradiction

* Suppose that H is a Java program that solves the

Halting problem. Then we can write this program:
public static void D(x) {
if (H(x,x) == true) {
while (true); /* don’t halt */

}
else {

return; /* halt */
¥

* Does D(CODE(D)) halt?

public static void D(x) {
if (H(x,x) == true) {

while (true); /* don’t halt */

Does D(CODE (D)) halt?

}
else {

return; /* halt */
}

}

H solves the halting problem implies that
H(CODE(D),x) is true iff D(x) halts, H(CODE(D),x) is false iff not

public static void D(x) {
if (H(x,x) == true) {

while (true); /* don’t halt */

Does D(CODE (D)) halt?

}
else {

return; /* halt */
}

}

public static void D(x) {
if (H(x,x) == true) {

while (true); /* don’t halt */

Does D(CODE (D)) halt?

H solves the halting problem implies that
H(CODE(D),x) is true iff D(x) halts, H(CODE(D),x) is false iff not

Suppose D(CODE (D)) halts.
Then, we must be in the second case of the if.
So, H(CODE (D), CODE(D)) is false
Which means D(CODE (D)) doesn’t halt

}
else {

return; /* halt */
}

}

H solves the halting problem implies that
H(CODE(D),x) is true iff D(x) halts, H(CODE(D),x) is false iff not

Suppose D(CODE (D)) halts.
Then, we must be in the second case of the if.
So, H(CODE (D), CODE(D)) is false
Which means D(CODE (D)) doesn’t halt

Suppose D(CODE (D)) doesn’t halt.
Then, we must be in the first case of the if.
So, H(CODE (D), CODE(D)) is true.
Which means D(CODE (D)) halts.

public static void D(x) {
if (H(x,x) == true) {

while (true); /* don’t halt */

Does D(CODE (D)) halt? .

else {
return; /* halt */

}

}

H solves the halting problem implies that
H(CODE(D),x) is true iff D(x) halts, H(CODE(D),x) is false iff not

Suppose D(CODE(D)) halts.
Then, we must be in the second case of the if.

So, H(CODE (D), CODE(D)) is false
Which means D(CODE (D)) doesn’t halt

Suppose D(CODE (D)) doesn’t halt.
Then, we must be in the first case of the if.

So, H(CODE (D), CODE(D)) is true. L
Which means D(CODE (D)) halts. Contradiction!

That’s it!

* We proved that there is no computer
program that can solve the Halting Problem.
— There was nothing special about Java

* This tells us that there is no compiler that
can check our programs and guarantee to
find any infinite loops they might have.

What's next?

* We showed: If some “hypothetical” subroutine
H existed that solved the Halting Problem then
it would let us build a program D that cannot
possibly exist
— We will use the same idea to show that programs

solving other problems are impossible, but we now
will be able to use that H cannot exist

* A key piece of the proof was considering what
a program does when given its own code as
input
— This was inspired by a method to compare the sizes

of infinite sets call diagonalization that we will
study next class

