
CSE 311: Foundations of Computing

Fall 2013

Lecture 18: Structural induction, regular expressions

Announcements

Midterm back today

Graded Homework 5 back Friday

Homework 6 out later today

Review: Structural Induction

How to prove ∀	� ∈	�,	�(�)	is true:

Base Case: Show that �(
) is true for all specific
elements
 of � mentioned in the Basis step

Inductive Hypothesis: Assume that � is true for some
arbitrary values of each of the existing named
elements mentioned in the Recursive step

Inductive Step: Prove that �(�) holds for each of the
new elements � constructed in the Recursive step
using the named elements mentioned in the Inductive
Hypothesis

Conclude that ∀	� ∈	�,	�(�)	

Function Definitions on Recursively Defined Sets

Length:

len(ℇ) = 0

len(wa) = len(w) + 1 for w ∈	ΣΣΣΣ****, a ∈	ΣΣΣΣ

Reversal:

ℇR = ℇ

(wa)R = awR for w ∈	ΣΣΣΣ****, a ∈	ΣΣΣΣ

Concatenation:

x • ℇ = x for x ∈ ΣΣΣΣ****

x • wa = (x • w)a for x ∈	ΣΣΣΣ****, a ∈	ΣΣΣΣ

len(x•y) = len(x) + len(y) for all x,y ∈	ΣΣΣΣ****

Let P(y) be “len(x•y) = len(x) + len(y) for all x ∈	ΣΣΣΣ* * * * ” .

We prove P(y) for all y ∈	ΣΣΣΣ**** by structural induction.

Base Case: y= ℇ. For any x ∈	ΣΣΣΣ****, len(x• ℇ) = len(x) = len(x) + len(ℇ)

since len(ℇ)=0. Therefore P(ℇ) is true

Inductive Hypothesis: Assume that P(w) is true for some arbitrary

w ∈	ΣΣΣΣ****

Inductive Step: Goal: Show that P(wa) is true for every a ∈	ΣΣΣΣ

Let a ∈	ΣΣΣΣ. . . . Let x ∈	ΣΣΣΣ****. Then len(x•wa) = len((x•w)a) by defn of •

= len(x•w)+1 by defn of len

= len(x)+len(w)+1 by I.H.

= len(x)+len(wa) by defn of len

Therefore len(x•wa)= len(x)+len(wa) for all x ∈	ΣΣΣΣ****, so P(wa) is true.

So, by induction len(x•y) = len(x) + len(y) for all x,y ∈ ΣΣΣΣ*

Rooted Binary Trees

• Basis:Basis:Basis:Basis: • is a rooted binary tree

• Recursive step: Recursive step: Recursive step: Recursive step: If and are

rooted binary trees

then so is:

T1 T2

T1 T2

Functions Defined on Rooted Binary Trees

• size(•)=1

• size() = 1+size(T1)+size(T2)

• height(•)=0

• height()=1+max{height(T1),height(T2)}

T
1

T
2

T
1

T
2

Claim: Claim: Claim: Claim: For every rooted binary tree T, size(T) ≤ 2height(T) + 1 - 1

Languages: sets of strings

• Sets of strings that satisfy special properties

are called languages. Examples:

– English sentences

– Syntactically correct Java/C/C++ programs

– Σ∗ = All strings over alphabet Σ

– Palindromes over Σ

– Binary strings that don’t have a 0 after a 1

– Legal variable names. keywords in Java/C/C++

– Binary strings with an equal # of 0’s and 1’s

9

Regular Expressions

Regular expressions over Σ

• Basis:

∅∅∅∅, εεεε are regular expressions

a is a regular expression for any a ∈ Σ

• Recursive step:

– If A and B are regular expressions then so are:

(A ∪ B)

(AB)

A*

10

Each Regular Expression is a “pattern”

εεεε matches the empty string

a matches the one character string a

(A ∪ B) matches all strings that either A matches
or B matches (or both)

(AB) matches all strings that have a first part that
A matches followed by a second part that B
matches

A* matches all strings that have any number of
strings (even 0) that A matches, one after
another

11

Examples

• 001* 001* 001* 001*

• 0*1*0*1*0*1*0*1*

• (0 0 0 0 ∪ 1111)0000(0 0 0 0 ∪ 1111)0000

• (0*1*0*1*0*1*0*1*)****

• (0 0 0 0 ∪ 1111)* 0110 * 0110 * 0110 * 0110 (0 0 0 0 ∪ 1111)****

• (00 00 00 00 ∪ 11111111)* * * * (01010010100101001010 ∪ 10001100011000110001)(0 0 0 0 ∪ 1111)****

12

Regular Expressions in Practice

• Used to define the “tokens”: e.g., legal variable names,

keywords in programming languages and compilers

• Used in grep, a program that does pattern matching

searches in UNIX/LINUX

• Pattern matching using regular expressions is an essential

feature of PHP

• We can use regular expressions in programs to process

strings!

13

Regular Expressions in Java

• Pattern p = Pattern.compile("a*b");

• Matcher m = p.matcher("aaaaab");

• boolean b = m.matches();

[01] a 0 or a 1 ^ start of string $ end of string

[0-9] any single digit \. period \, comma \- minus

. any single character

ab a followed by b (AB)

(a|b) a or b (A ∪ B)

a? zero or one of a (A ∪ ℇ)

a* zero or more of a A*

a+ one or more of a AA*

• e.g. ^[\-+]?[0-9]*(\.|\,)?[0-9]+$

General form of decimal number e.g. 9.12 or -9,8 (Europe)14

More Examples

• All binary strings that have an even # of 1’s

• All binary strings that don’t contain 101

15

