
### CSE 311: Foundations of Computing

#### Fall 2013

#### Lecture 18: Structural induction, regular expressions



#### Announcements

Midterm back today

Graded Homework 5 back Friday

Homework 6 out later today

### **Review: Structural Induction**

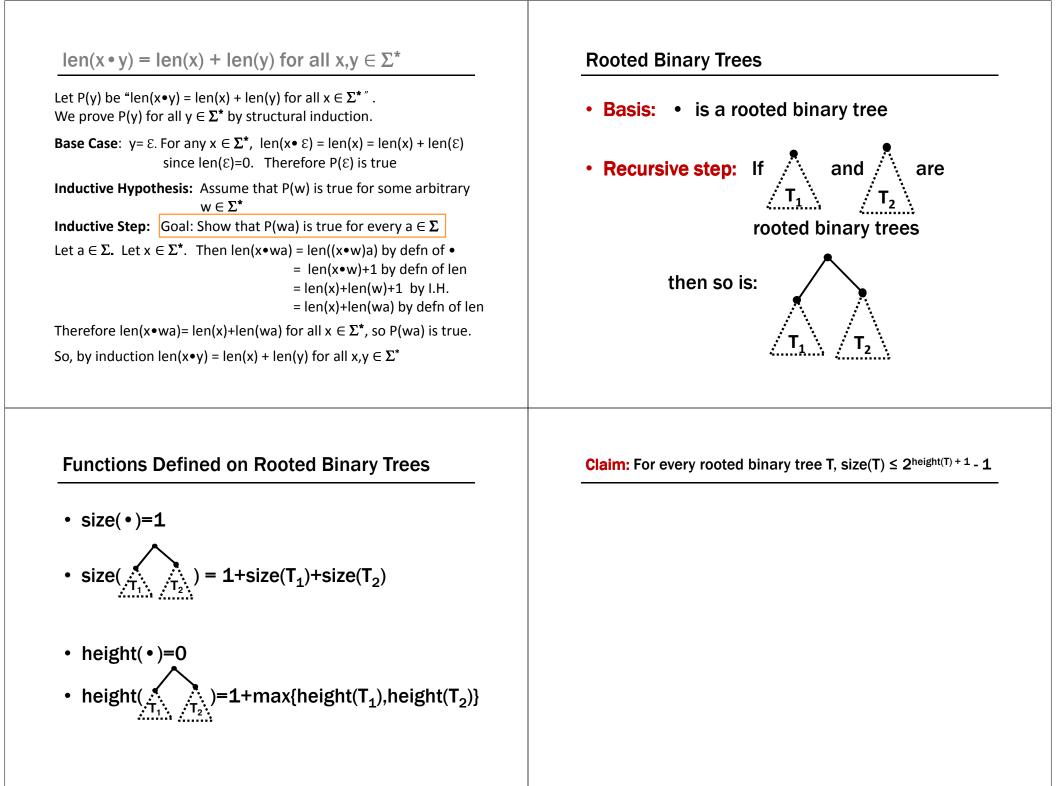
How to prove  $\forall x \in S, P(x)$  is true:

**Base Case:** Show that P(u) is true for all specific elements u of S mentioned in the Basis step

**Inductive Hypothesis:** Assume that *P* is true for some arbitrary values of *each* of the existing named elements mentioned in the *Recursive step* 

**Inductive Step:** Prove that P(w) holds for each of the new elements w constructed in the *Recursive step* using the named elements mentioned in the Inductive Hypothesis

**Conclude** that  $\forall x \in S, P(x)$ 


#### **Function Definitions on Recursively Defined Sets**

Length:  $len(\varepsilon) = 0$   $len(wa) = len(w) + 1 \text{ for } w \in \Sigma^*, a \in \Sigma$ Reversal:  $\varepsilon^{R} = \varepsilon$ 

 $(wa)^{R} = aw^{R}$  for  $w \in \Sigma^{*}$ ,  $a \in \Sigma$ 

#### Concatenation:

 $\begin{aligned} &x \bullet \mathcal{E} = x \text{ for } x \in \Sigma^{\star} \\ &x \bullet wa = (x \bullet w)a \text{ for } x \in \Sigma^{\star}, a \in \Sigma \end{aligned}$ 



# Languages: sets of strings

| <ul> <li>Sets of strings that satisfy special properties are called <i>languages</i>. Examples:</li> <li>English sentences</li> <li>Syntactically correct Java/C/C++ programs</li> <li>Σ* = All strings over alphabet Σ</li> <li>Palindromes over Σ</li> <li>Binary strings that don't have a 0 after a 1</li> <li>Legal variable names. keywords in Java/C/C++</li> <li>Binary strings with an equal # of 0's and 1's</li> </ul> | <ul> <li>Regular expressions over Σ</li> <li>Basis:</li> <li>Ø, ε are regular expressions</li> <li>a is a regular expression for any a ∈ Σ</li> <li>Recursive step:</li> <li>If A and B are regular expressions then so are:</li> <li>(A ∪ B)</li> <li>(AB)</li> <li>A*</li> </ul> |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Each Regular Expression is a "pattern"                                                                                                                                                                                                                                                                                                                                                                                            | Examples                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                   | Examples                                                                                                                                                                                                                                                                           |
| ε matches the empty string                                                                                                                                                                                                                                                                                                                                                                                                        | • 001*                                                                                                                                                                                                                                                                             |
| ε matches the empty string<br><i>a</i> matches the one character string <i>a</i>                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                   | • 001*                                                                                                                                                                                                                                                                             |
| <b>a</b> matches the one character string <b>a</b> $(A \cup B)$ matches all strings that either A matches                                                                                                                                                                                                                                                                                                                         | • 001*<br>• 0*1*                                                                                                                                                                                                                                                                   |
| <ul> <li>a matches the one character string a</li> <li>(A ∪ B) matches all strings that either A matches or B matches (or both)</li> <li>(AB) matches all strings that have a first part that</li> </ul>                                                                                                                                                                                                                          | <ul> <li>001*</li> <li>0*1*</li> <li>(0 ∪ 1)0(0 ∪ 1)0</li> </ul>                                                                                                                                                                                                                   |
| <ul> <li>a matches the one character string a</li> <li>(A ∪ B) matches all strings that either A matches or B matches (or both)</li> <li>(AB) matches all strings that have a first part that A matches followed by a second part that B matches</li> </ul>                                                                                                                                                                       | • 001*<br>• 0*1*<br>• $(0 \cup 1)0(0 \cup 1)0$<br>• $(0*1*)*$                                                                                                                                                                                                                      |

**Regular Expressions** 

## **Regular Expressions in Practice**

| <ul> <li>Used to define the "tokens": e.g., legal variable names,</li> </ul>    | <ul> <li>Pattern p = Pattern.compile("a*b");</li> </ul>                                                                            |
|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| keywords in programming languages and compilers                                 | <ul> <li>Matcher m = p.matcher("aaaaab");</li> </ul>                                                                               |
| <ul> <li>Used in grep, a program that does pattern matching</li> </ul>          | <ul> <li>boolean b = m.matches();</li> </ul>                                                                                       |
| searches in UNIX/LINUX                                                          | [01] a 0 or a 1 ^ start of string \$ end of string                                                                                 |
| <ul> <li>Pattern matching using regular expressions is an essential</li> </ul>  | [0–9] any single digit $\land$ . period $\land$ , comma $\land$ – minus                                                            |
| feature of PHP                                                                  | . any single character                                                                                                             |
| <ul> <li>We can use regular expressions in programs to process</li> </ul>       | ab a followed by b (AB)                                                                                                            |
| strings!                                                                        | (a b) a or b $(\mathbf{A} \cup \mathbf{B})$                                                                                        |
|                                                                                 | a? zero or one of a $(\mathbf{A} \cup \varepsilon)$                                                                                |
|                                                                                 | a* zero or more of a A*                                                                                                            |
|                                                                                 | a+ one or more of a $AA^*$                                                                                                         |
| 13                                                                              | <ul> <li>e.g. ^[\−+]?[0−9]*(\. )?[0−9]+\$</li> <li>General form of decimal number e.g. 9.12<sup>1</sup> or -9,8 (Europe</li> </ul> |
|                                                                                 |                                                                                                                                    |
|                                                                                 |                                                                                                                                    |
|                                                                                 |                                                                                                                                    |
| More Examples <ul> <li>All binary strings that have an even # of 1's</li> </ul> |                                                                                                                                    |
|                                                                                 |                                                                                                                                    |
| <ul> <li>All binary strings that have an even # of 1's</li> </ul>               |                                                                                                                                    |
| <ul> <li>All binary strings that have an even # of 1's</li> </ul>               |                                                                                                                                    |
| <ul> <li>All binary strings that have an even # of 1's</li> </ul>               |                                                                                                                                    |

Regular Expressions in Java