AND OVER THERE WE HAVE THE LABYRINTH GUARDS.
ONE ALWAYS LIES, ONE ALWAYS TELS THE TRUTH, AND
ONE STABS PEOPLE WHO ASK TRICKY QUESTIONS.

Foundations of
Computing |

Fall 2014

Administrivia

Course Web: http://www.cs.washington.edu/311

Office Hours: 10 hours available; check web

Homework #1: Posted. Turn in (stapled) at the
start of class on Wednesday (Oct 1)

Extra Credit: Not required to get a 4.0.
Counts separately.

In total, may raise grade by ~0.1

Last Time: Logical Connectives

pAg

NOT

AND

pPDqg

pvq

XOR

OR

Index Card Questions!

Index Card “Gotchas”

-l
}

. [:

a
L]

PA (?- Ty N

(ry [S vl!n
CTA% VRt

slone

[

e———}

)

| | |
| ! | _
|
—|
| i | |
{ | | !
| | i

[T
VR W R R

S A

4, .
.
A
~ I
AL Lo
UVTT:“T»LT.M.‘/F_TF
| | | | |
=
T [|
| ” M
u “ .
N
ilrrIl.frr
~
. P
S A e e
|| I

I I A B
,LTFW,I,Tr;L;
H 1 i i

AN L [

|
|

|

| |
| .
Tr_ Wi | L

—

ﬂ,[L,
i i

g

[
B
| }

! i
| |

DoNE

C

xr .=

Afrva (™)

q-2>c p/\(cgvf) rYq YAq (TV‘I)V[VA‘{) eA(g 2y

]
-

-
.F
< ¥ 1T

X
F

F

T

W

T

F_ ¥ F

Index Card “Gotchas”

RORTER _
TR e /\(f’ >0 rva) , . —r—
P 0o—— ngwi_:i A eV vlre

- % @»fi ol

Last Time: p—qg

* “If p, then g” is a promise: P19 |Pq
* Whenever p is true, then q is true E _'; I
* Ask “has the promise been broken” . .
T | T T

If it’s raining, then | have my umbrella

Suppose it’s not raining...

First Question: It’s not raining, and | don’t bring my umbrella. Have | broken
the promise?

Second Question: It’s not raining, and | bring my umbrella. Have | broken
the promise?

In both cases, the pre-requisite to my promise isn’t met. So, | haven’t in
either case. In fact, the only case in which I've lied to you is when it’s
raining, but | don’t have my umbrella.

Last Time: Related Implications

* Implication: p—q
* Converse: q—p
* Contrapositive: -qQ—-p
* Inverse: -p—-q

How do these relate to each other?

Example:
p: x is divisible by 2
q: x is divisible by 4

p—q False
q—p True
-q— —p False

-p — —q True

Last Time: pog

e piffq
* pis equivalent to q
* pimplies g and q implies p

q | P4

'|'|'|'|—|—|~G
|4 |7 |
—A || ™ |-

CSE 311: Foundations of Computing

Fall 2014
Lecture 2: Digital Circuits & More Logic

AND OVER THERE WE HAVE THE LABYRINTH GUARDS.
ONE ALWAYS LIES, ONE ALWAYS TELLS THE TRUTH, AND
ONE STABS PEOPLE WHO ASK TRICKY QUESTIONS.

Digital Circuits

Computing With Logic
— T corresponds to 1 or “high” voltage
—F corresponds to O or “low” voltage

Gates
— Take inputs and produce outputs (functions)
— Several kinds of gates

— Correspond to propositional connectives (most
of them)

And Gate

AND Connective vs. AND Gate
prg G jawe)—our
p q PAq p q ouT
T T T 1 1 1
T F F 1 0 0
F T F 0 1 0
F F F 0 0 0

p —
i
“block looks like D of AND”

AND ouT

Or Gate

OR Connective VS. OR Gate
p q | PVAq p q ouT
T T T 1 1 1
T F T 1 0 1
F T T 0 1 1
F F F 0 0 0

“arrowhead block looks like V”

Not Gates

NOT Connective VS. NOT Gate
-p pOUT \
Also called
inverter
p | —p p | out
T 1 0
T 0 1

pow

Blobs are Okay!

You may write gates using blobs instead of shapes!

P OUT
q
P OUT
q

pOUT

Let’s Try Something New...

GOTO: http://tinyurl.com/ynlecture

Combinational Logic Circuits

P
q AND
f)

Values get sent along wires connecting gates

pA(=gA(rVs))

Combinational Logic Circuits

P

g

AND

AND

Wires can send one value to multiple gates!

(PA=q) V(g AT)

Logical Equivalence

Terminology: A compound proposition is a...
— Tautology if it is always true
— Contradiction if it is always false

— Contingency if it can be either true or false

PV =P Tautology!

pOp Contradiction!

(0= q) AP Contingency (note: in lecture the and
was an or)!

PAq)vPeA=qVv(=PAQV(EPATA) Taytology!

Logical Equivalence

A and B are logically equivalent if and only if
A <= B is a tautology
i.e. A and B have the same truth table

The notation A = B denotes A and B are
logically equivalent

Example: =-=p

p -Ip —l—lp p(—)—l—lp

Logical Equivalence

A and B are logically equivalent if and only if
A <= B is a tautology
i.e. A and B have the same truth table

The notation A = B denotes A and B are
logically equivalent

Example: p=--p

p -Ip —l—lp p(—)—l—lp

T F T T

F| T F T

A<=B vs. A=B

A = B says that two propositions A and B always mean
the same thing

A <= B is a single proposition that may be true or false

depending on the truth values of the variables in A
and B

* but A=Band (A <= B) =T have the same
meaning

Note: Why write A =B and not A=B ?

We use A=B to say that A and B are precisely the
same proposition (same sequence of symbols)

De Morgan’s Laws

-(pArqQ)=-pv-g
-(pvQq)=-pA-g

My code compiles or there is a bug.

The negation of this statement is:
It's not the case that my code compiles or there is a bug

My code doesn’t compile and there isn’'t a bug

De Morgan’s Laws

Example: = (pAg)=(-pvVv = Q)

~pv-gq

PAq

= (p A q)

~(pAq)<>(-pVv-q)

m | |44

m|H|m |4 (R

De Morgan’s Laws

Example: = (pAg)=(-pvVv = Q)

plg|-p |-q |-pv-q |pArqg |-(pArq) [-(prg)<=(=pV-q)
T|T| F F F T F T
T|F| F T T F T T
FIT| T F T F T T
FIF| T T T F T T

De Morgan’s laws

if (!(front != null &R value > front.data))
front = new ListNode(value, front);

else {
ListNode current = front;
while (current.next != null && current.next.data < value))

current = current.next;
current.next = new ListNode(value, current.next);

}

This code inserts value into a sorted linked list.
The first if runs when...front is null or value is smaller than the first item.

The while loop stops when...we've reached the end of the list or the next value
is bigger.

Law of Implication

(p—=q)=(-pvq)

p—q

~pvq

(b—=>q)< (-pvq)

T4

M| |(m |4 R

Law of Implication

(p—qg)=(-pvqg)

p|q|p— -p |~pvq| (p—>q)< (-pvq)
T T T F T T
T| F F F F T
F T T T T T
F F T T T T

Computing Equivalence

Describe an algorithm for computing if two logical
expressions/circuits are equivalent.

What is the run time of the algorithm?

Compute the entire truth table for both of them!

There are 2" entries in the column for n variables.

Some Familiar Properties of Arithmetic

*xX+y=y+x (Commutativity)
-—pvVq=qVp
—PANqQ=QqAD

e x-(y+z)=x-y+x-z (Distributivity)
-pA(@VT)=E@AQV(PAT)
-pV@AT) =@V A(PVT)

s (x+y)+z=x+(y+2z) (Associativity)
-(veVvr=pv(qVr)
—-@AQAT=pA(QAT)

We will always give

Properties of Logical Connectives you this list!

Identity * Associative

-pAT=p - (pvq@Vvr=pv(qVvr)

- pVF=p - (PAQAT=pA(qAT)
Domination * Distributive

- pVT=T -pA@Vr)=(@AqV(pAT)
— pAF=F -pv@Ar)=(@VgA(pVr)
Idempotent * Absorption

-~ pVp=Ep -pVv(pAg =p

-~ pApP=Dp -pA(pVvg) =p
Commutative Negation

—pVqg=EqVp —pVap=T

—DPANQ=EqAD —pAp=F

Some Equivalences Related to Implication

p—d = -pvg

p—d = -qgq—=>-p
p<gd = (p—qg)r(g—Dp)
p<q = -p<-d

Understanding Connectives

* Reflect basic rules of reasoning and logic
* Allow manipulation of logical formulas

— Simplification

— Testing for equivalence
* Applications

— Query optimization

— Search optimization and caching

— Artificial Intelligence

— Program verification

Difficult-ware

