CSE 311: Foundations of Computing I

Section: Relations, CFGs, and DFAs Solutions

CFGs

Construct CFGs for the following languages:

(a) All binary strings that end in 00.

Solution:

 $\mathbf{S} \rightarrow 0\mathbf{S} \mid 1\mathbf{S} \mid 00$

(b) All binary strings that contain at least three 1's.

Solution:

$$\begin{split} \mathbf{S} &\rightarrow \mathbf{0S} \mid \mathbf{1T} \\ \mathbf{T}_1 &\rightarrow \mathbf{0T}_1 \mid \mathbf{1T}_2 \\ \mathbf{T}_2 &\rightarrow \mathbf{0T}_2 \mid \mathbf{1T}_3 \\ \mathbf{T}_3 &\rightarrow \mathbf{0T}_3 \mid \mathbf{1T}_3 \mid \varepsilon \end{split}$$

(c) All binary strings with an equal number of 1's and 0's.

Solution:

$$\begin{split} \mathbf{S} &\rightarrow \mathbf{0}\mathbf{S}\mathbf{1}\mathbf{S} \mid \mathbf{1}\mathbf{S}\mathbf{0}\mathbf{S} \mid \boldsymbol{\varepsilon} \\ \mathbf{S} &\rightarrow \mathbf{S}\mathbf{S} \mid \mathbf{0}\mathbf{S}\mathbf{1} \mid \mathbf{1}\mathbf{S}\mathbf{0} \mid \boldsymbol{\varepsilon} \end{split}$$

Relations

(a) Draw the transitive-reflexive closure of $\{(1,2), (2,3), (3,4)\}$.

Solution:

(b) Suppose that R is reflexive. Prove that $R \subseteq R^2$.

Solution: Suppose $(a,b) \in R$. Since R is reflexive, we know $(b,b) \in R$ as well. Since there is a b such that $(a,b) \in R$ and $(b,b) \in R$, it follows that $(a,b) \in R^2$. Thus, $R \subseteq R^2$.

(c) Consider the relation $R = \{(x, y) : x = y + 1\}$ on \mathbb{N} . Is R reflexive? Transitive? Symmetric? Anti-symmetric?

Solution: It isn't reflexive, because $1 \neq 1 + 1$; so, $(1,1) \notin R$. It isn't symmetric, because $(2,1) \in R$ (because 2 = 1 + 1), but $(1,2) \notin R$, because $1 \neq 2 + 1$. It isn't transitive, because note that $(3,2) \in R$ and $(2,1) \in R$, but $(3,1) \notin R$. It is anti-symmetric, because consider $(x,y) \in R$ such that $x \neq y$. Then, x = y + 1 by definition of R. However, $(y,x) \notin R$, because $y = x - 1 \neq x + 1$.

(d) Consider the relation $S = \{(x, y) \mid x^2 = y^2\}$ on \mathbb{R} . Prove that S is reflexive, transitive, and symmetric.

Solution: Consider $x \in \mathbb{R}$. Note that by definition of equality, $x^2 = x^2$; so, $(x, x) \in R$; so, R is reflexive.

Consider $(x, y) \in R$. Then, $x^2 = y^2$. It follows that $y^2 = x^2$; so, $(y, x) \in R$. So, R is symmetric. Suppose $(x, y) \in R$ and $(y, z) \in R$. Then, $x^2 = y^2$, and $y^2 = z^2$. Since equality is transitive, $x^2 = z^2$. So, $(x, z) \in R$. So, R is transitive.

DFAs

Construct a DFA for the language of all binary strings, where $\Sigma = \{0, 1, 2\}$.

Solution: Omitted.