CSE 311: Foundations of Computing |

Section: Number Theory Solutions

GCD

(a) Calculate ged(100, 50).
Solution: 50

(b) Calculate ged(17,31).
Solution: 1

(c) Find the multiplicative inverse of 6 modulo 7.
Solution: 6

(d) Does 49 have an multiplicative inverse modulo 77

Solution: 1t does not. Intuitively, this is because 492 for any x is going to be 0 mod 7, which
means it can never be 1.

(e) Find the multiplicative inverse of 7 modulo 311.
Solution: 89
(f) Find the multiplicative inverse of 27 modulo 151.

Solution: 28

More Number Theory

(a) Prove that if n? + 1 is a perfect square, where n is an integer, then n is even.
Solution: Suppose n? + 1 is a perfect square. Then, by definition of perfect square, n? + 1 = k2
for some k € N. Suppose for contradiction that n is odd. Then, n? +1 = (2j +1)2 +1 =
452 + 45 +1+1 =402 +j5) +2.

(b) Prove that if n is a positive integer such that the sum of the divisors of n is n+1, then n is prime.

Solution: Note that n | n. If the sum of divisors of n is n + 1, then n +1 —n = 1 must
be the only other divisor. It follows, by definition of prime, that n is prime.



Induction

(a) Prove that if you have two groups of numbers, aq,- -+ ,a, and by, - - , by, such that V(i € [n]). a; <

b;, then it must be that:
Zai < Z b
=1 =

Solution: We prove this by induction on n:

Base Case (n =1). We know that:

n 1
Zai:Zaizal Zbizzbi:bl
i=1 i=1 ; ;

Because we're given that a1 < b1, we know that:

n n
Zai:al <bh :Zbi
i—1 i=1

k k
Induction Hypothesis. Assume for some k € N that Zai < Zbi for all sequences a1, ,an,
i=1 i=1
and by, -+ , by, such that a; < b; for all i € [n]
Induction Step. Let a sequence of numbers ay, -+ ,axy1 and by, - -+, bp1 be two sequences such
that a; < b; for all i € [n + 1].
We can do the following work:
n n
Zai < Z b; [Induction Hypothesis]
i=1 i=1
n n
an+1 + Z a; < bpt1 + Z b; [an+1 < bpyi]
i=1 i=1
n+1 n+1
Zai < Z bi [Shifting elements into Sum]
i=1 i=1

Thus we have shown in true for the case of k + 1 elements.

Therefore, we have shown the claim true by induction.

(b) For any n € N, define S,, to be the sum of the squares of the first n positive integers, or

n
S, = § i2.
=1

For all n € N, prove that S, = gn(n+ 1)(2n + 1).

Solution: Let P(n) be the statement “S, = gn(n + 1)(2n + 1)” defined for all n € N. We
prove that P(n) is true for all n € N by induction on n.



Base Case. When n = 0, we know the sum of the squares of the first n positive integers is the
sum of no terms, so we have a sum of 0. Thus, Sy = 0. Since £(0)(0+1)((2)(0) +1) =0,
we know that P(0) is true.

Induction Hypothesis. Assume that P(k) is true for some k € N.

Induction Step. Examining Sk, we see that

k+1 k
Seri=) i?=> P+ (k+1)7 =5+ (k+1)
=1 =1

By the induction hypothesis, we know that S = %k(k; + 1)(2k + 1). Therefore, we can
substitute and rewrite the expression as follows:

Sgi1 = Sk + (k+ 1)

_ ék;(k: +F1)(2k+ 1) + (k+1)2
= (k+1) (ék(% +1)+ (k+ 1))
_ é(’” 1) (k(2k + 1) + 6(k + 1))
- é(k+ 1) (2k* + Tk + 6)
_ é(’” 1)(k +2)(2k + 3)
_ é(m D((k+ 1)+ 1)(2(k + 1) + 1)

Thus, we can conclude that P(k + 1) is true.

Therefore, because the base case and induction step hold, P(n) is true for all n € N by induction.

(c) Define the triangle numbers as A, =1+ 2+ --- 4 n, where n € N. We showed in lecture that
A, = n(n+1)

2
Prove the following equality for all n € N:

n
> it =]
=0

Solution:

2
n n n

First, note that A,, = Zz So, we are trying to prove Zig = ( z) .
=0

=0 i=0
Let P(n) be the statement:

n n 2
(%)
=0 =0

We prove that P(n) is true for all n € N by induction on n.



Base Case. 0% = 02, so P(0) holds.

Induction Hypothesis. Assume that P(k) is true for some k € N.

Induction Step. We show P(k + 1):
kt1 k
Zﬁ — Z B34 (k+1)3
k
(Z > (k+1)*
=0
k
( kvl > + (k+1)°

)2 —2 k+1>
k+12(2 4k+4>

2 k+2>

<k+1 (k + )
(%)

2

Therefore, P(n) is true for all n € N by induction.

[Take out a term]

[Induction Hypothesis]

[Substitution from part (a)]
[Factor (k 4 1)7]
[Add via comon denominator]

[Factor numerator]

[Take out the square]

[Substitution from part (a)]



