CSE 311: Foundations of Computing I

Section: Sets and Modular Arithmetic Solutions

How Many Elements?

For each of these, how many elements are in the set? If the set has infinitely many elements, say so.

(a) $A = \{1, 2, 3, 2\}$

Solution: 3

(b)
$$B = \{\{\}, \{\{\}\}, \{\{\}, \{\}\}, \{\{\}, \{\}\}, \dots\}$$

Solution:

$$B = \{\{\}, \{\{\}\}, \{\{\}, \{\}\}, \{\{\}\}, \dots\}$$

$$= \{\{\}, \{\{\}\}, \{\{\}\}\}, \{\{\}\}, \dots\}$$

$$= \{\emptyset, \{\emptyset\}\}$$

So, there are two elements in B.

(c) $C = A \times (B \cup \{7\})$

Solution: $C=\{1,2,3\}\times\{\varnothing,\{\varnothing\},7\}=\{(a,b)\mid a\in\{1,2,3\},b\in\{\varnothing,\{\varnothing\},7\}\}.$ It follows that there are $3\times 3=9$ elements in C.

(d) $D = \emptyset$

Solution: 0.

(e) $E = \{\emptyset\}$

Solution: 1.

(f) $F = \mathcal{P}(\{\emptyset\})$

 $\textit{Solution: } 2^1=2. \ \ \text{The elements are } F=\{\varnothing, \{\varnothing\}\}.$

Set = Set

Prove the following set identities.

(a) Let the universal set be \mathcal{U} . Prove $\overline{\overline{X}} = X$ for any set X.

Solution: We want to prove that $S = \overline{\overline{S}}$.

$$\begin{split} S &= \{x \ : \ x \in S\} \\ &= \{x \ : \ \neg \neg (x \in S)\} \quad \text{[Negation]} \\ &= \{x \ : \ \neg (x \not \in S)\} \quad \text{[Definition of } \not \in \text{]} \\ &= \{x \ : \ \neg (x \in \overline{S})\} \quad \text{[Definition of } \overline{S}\text{]} \\ &= \{x \ : \ (x \not \in \overline{S})\} \quad \text{[Definition of } \not \in \text{]} \\ &= \{x \ : \ x \in \overline{\overline{S}}\} \quad \text{[Definition of } \overline{\overline{S}}\text{]} \\ &= \overline{\overline{S}} \end{split}$$

It follows that $S = \overline{\overline{S}}$.

(Note that if we did not have a universal set, this whole proof would be garbage.)

(b) Prove $(A \oplus B) \oplus B = A$ for any sets A, B.

Solution:

$$(A \oplus B) \oplus B = \{x \ : \ x \in (A \oplus B) \oplus B\} \qquad \text{[Set Comprehension]}$$

$$= \{x \ : \ (x \in A \oplus x \in B) \oplus (x \in B)\} \qquad \text{[Definition of } \oplus \text{]}$$

$$= \{x \ : \ x \in A \oplus (x \in B \oplus x \in B)\} \qquad \text{[Associativity of } \oplus \text{]}$$

$$= \{x \ : \ x \in A \oplus (\mathsf{F})\} \qquad \text{[Definition of } \oplus \text{]}$$

$$= \{x \ : \ x \in A\} \qquad \text{[Definition of } \oplus \text{]}$$

$$= A \qquad \text{[Set Comprehension]}$$

(c) Prove $A \cup B \subseteq A \cup B \cup C$ for any sets A, B, C.

Solution: Let x be arbitrary.

Thus, since $x \in A \cup B \to x \in (A \cup B) \cup C$, it follows that $A \cup B \subseteq A \cup B \cup C$, by definition of subset.

(d) Let the universal set be \mathcal{U} . Prove $A \cap \overline{B} \subseteq A \setminus B$ for any sets A, B.

Solution: Let x be arbitrary.

$$\begin{array}{cccc} x \in A \cap \overline{B} & \to & x \in A \wedge x \in \overline{B} & [\text{Definition of } \cap] \\ & \to & x \in A \wedge x \not \in B & [\text{Definition of } \overline{B}] \\ & \to & x \in A \setminus B & [\text{Definition of } \setminus] \end{array}$$

Thus, since $x \in A \cap \overline{B} \to x \in A \setminus B$, it follows that $A \cap \overline{B} \subseteq A \setminus B$, by definition of subset.

Casting Out Nines

Let $n \in \mathbb{N}$. Prove that if $n \equiv 0 \pmod{9}$, then the sum of the digits of n is a multiple of 9.

Solution: Suppose $n\equiv 0\pmod 9$, where $n=(x_mx_{m-1}\cdots x_1x_0)_{10}$ (This is because we are working with a base-10 number). Then, it follows that $\sum_{i=0}^m x_i10^i\equiv 0\pmod 9$. Note that $10\mod 9=1$.

So, the previous summation is the same as $\sum_{i=0}^{m} x_i 1^i \equiv 0 \pmod{9}$. Simplifying, we see that $\sum_{i=0}^{m} x_i \equiv 0 \pmod{9}$, which is what we were trying to prove.

Modular Arithmetic

(a) Prove that if $a \mid b$ and $b \mid a$, where a and b are integers, then a = b or a = -b.

Solution: Suppose $a \mid b$ and $b \mid a$, where a,b are integers. By definition of divides, we have b=ka, a=jb for some integers k,j. Combining these equations, we see that a=j(ka). We go by cases on if a is zero or not.

Case 1: a=0. Then, we have $b=k\cdot 0=0$. So, a=b=0, and the theorem holds.

Case 2: $a \neq 0$. Then, dividing both sides by a, we get 1 = jk. So, $\frac{1}{j} = k$. Note that j and k are integers, which is only possible if $j, k \in \{1, -1\}$. It follows that b = -a or b = a, as required. Since the theorem is true in both cases, it is true.

(b) Prove that if $n \mid m$, where n and m are integers greater than 1, and if $a \equiv b \pmod{m}$, where a and b are integers, then $a \equiv b \pmod{n}$.

Solution: Suppose $n \mid m$ with n,m>1, and $a\equiv b\pmod{m}$. By definition of divides, we have m=kn for some $k\in\mathbb{Z}$. By definition of congruence, we have $m\mid a-b$, which means that a-b=mj for some $j\in\mathbb{Z}$. Combining the two equations, we see that a-b=(knj)=n(kj). By definition of congruence, we have $a\equiv b\pmod{n}$, as required.