There are many clubs/organizations that people at Ubiquity University (UU) can belong to. Some people at UU are students, some are TAs, and, following a famous Sherlock Holmes story, some people red hair have banded together to form some specific clubs of their own. For this question we will let the universe of discourse be all people at UU together with all clubs at UU and have predicates \(\text{Member}(x, c) \) to denote that \(x \) is a member of club \(c \), and \(\text{Student}(x), \text{TA}(x), \text{Red}(x) \) to denote, respectively, that \(x \) is a student, is a TA, or has red hair. We also use predicates \(\text{Club}(c) \) to denote that \(c \) is a club and \(\text{Person}(x) \) to denote that \(x \) is a person. Using the following properties of UU:

- Property \(E_S: \forall x \ (\text{Member}(x, SR) \iff (\text{Student}(x) \land \text{Red}(x))) \)
- Property \(E_T: \forall x \ (\text{Member}(x, TR) \iff (\text{TA}(x) \land \text{Red}(x))) \)
- Property \(C: \forall c (\text{Club}(c) \rightarrow \exists d (\text{Club}(d) \land \forall x (\text{Person}(x) \rightarrow (\text{Member}(x, d) \iff \neg \text{Member}(x, c)))))) \)
- Property \(G: \forall c (\text{Club}(c) \rightarrow \exists x (\text{Person}(x) \land \neg \text{Member}(x, c))) \)

Prove that there is at least one student at UU who does not have red hair.