
CSE 311: Foundations of Computing I Autumn 2014

Practice Final: Section X YY ZZ

Name:

UW ID:

Instructions:

• Closed book, closed notes, no cell phones, no calculators.

• You have 110 minutes to complete the exam.

• Answer all problems on the exam paper.

• If you need extra space use the back of a page.

• Problems are not of equal difficulty; if you get stuck on a problem, move on.

• You may tear off the last two pages of equivalence and inference rules. These must be
handed in at the end but will not be graded.

• It may be to your advantage to read all the problems before beginning the exam.

Score Table Here
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1. [? points]
Let Σ = {0, 1}. Prove that the language L = {x ∈ Σ∗ : #0(x) < #1(x)} is irregular.

Solution: Let D be an arbitrary DFA. Consider S = {0n : n ≥ 0}. Since S is infinite and
D has finitely many states, we know 0i ∈ S and 0j ∈ S both end in the same state for some
i < j. Append 1j to both strings to get:

a = 0i1j Note that a ∈ L, because i < j and 0i1j ∈ Σ∗.

b = 0j1j Note that b 6∈ L, because j 6< j.

Since a and b both end in the same state, and that state cannot both be an accept and reject
state, D cannot recognize L. Since D was arbitrary, no DFA recognizes L; so, L is irregular.
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2. [? points]
Define

T (n) =

{
n if n = 0, 1

4T
(
bn
2
c
)

+ n otherwise

Prove that T (n) ≤ n3 for n ≥ 3.

Solution: We go by strong induction on n. Let P (n) be “T (n) ≤ n3” for n ∈ N.

Base Cases. When n = 3, T (3) = 4T
(⌊

3
2

⌋)
+ 3 = 4T (1) + 3 = 7 ≤ 27 = 33.

When n = 4, T (4) = 4T
(⌊

4
2

⌋)
+ 4 = 4T (2) + 4 = 27 ≤ 64 = 43.

When n = 5, T (5) = 4T
(⌊

5
2

⌋)
+ 5 = 4T (2) + 5 = 28 ≤ 44.

Induction Hypothesis. Suppose P (3) ∧ P (4) ∧ · · · ∧ P (k) for some k ≥ 5.

Induction Step. We want to prove P (k + 1): Note that

T (k + 1) = 4T

(⌊
k + 1

2

⌋)
+ k + 1, because k + 1 ≥ 2.

≤ 4

(⌊
k + 1

2

⌋)3

+ k + 1, by IH.

≤ 4

(
k + 1

2

)3

+ k + 1, by def of floor.

= 4

(
(k + 1)3

23

)
+ k + 1, by algebra.

=
(k + 1)3

2
+ k + 1, by algebra.

=
(k + 1)((k + 1)2 + 2)

2
, by algebra.

≤ (k + 1)((k + 1)2 + (k + 1)2)

2
, because (k + 1)2 ≥ 2.

= (k + 1)3, by algebra

Thus, since the base case and induction step hold, the P (n) is true for n ≥ 3.
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3. [? points]
Let Σ = {0, 1, 2}.
Consider L = {w ∈ Σ∗ : Every 1 in the string has at least one 0 before and after it}.

a) Give a regular expression that represents A.

Solution: (0 ∪ 2)∗(0(0 ∪ 1 ∪ 2)∗0)∗(0 ∪ 2)∗

b) Give a DFA that recognizes A.

Solution: Omitted.

c) Give a CFG that generates A.

Solution:

S → ε | 0S | 2S | 0ST
T → 1R0S

R→ ε | 0R | 1R | 2R
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4. [? points]
Consider the following CFG: S→ SS | S1 | S01. Another way of writing the recursive definition
of this set, Q, is as follows:

• ε ∈ Q

• If S ∈ Q, then S1 ∈ Q and S01 ∈ Q

• If S, T ∈ Q, then ST ∈ Q.

Prove, by structural induction that if w ∈ Q, then w has at least as many 1’s as 0’s.

Solution: We go by structal induction on w. Let P (w) be “#0(w) ≤ #1(w)” for w ∈ Σ∗.

Base Case. When w = ε, note that #0(w) = 0 = #1(w). So, the claim is true.

Induction Hypothesis. Suppose P (w), P (v) are true for some w, v generated by the grammar.

Induction Step 1. Note that #0(w1) = #0(w) ≤ #1(w)+1 = #1(w1) by IH, and #0(w01) =
#0(w) + 1 ≤ #1(w) + 1 = #1(w01) by IH.

Induction Step 2. Note that #0(wv) = #0(w) + #0(v) ≤ #1(w) + #1(v) by IH.

Since the claim is true for all recursive rules, the claim is true for all strings generated by the
grammar.
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5. [? points]
For each of the following answer True or False and give a short explanation of your answer.

• Any subset of a regular language is also regular.

Solution: False. Consider {0, 1}∗ and {0n1n : n ≥ 0}. Note that the first is regular
and the second is irregular, but the second is a subset of the first.

• The set of programs that loop forever on at least one input is decidable.

Solution: False. If we could solve this problem, we could solve HaltNoInput. Intuitively, a
program that solves this problem would have to try all inputs, but, since the program might
infinte loop on some of them, it won’t be able to.

• If R ⊆ A for some set A, then A is uncountable.

Solution: True. Diagonalization would still work; alternatively, if A were countable, then
we could find an onto function between N and R by skipping all the elements in A that
aren’t in R.

• If the domain of discourse is people, the logical statement

∃x (P (x)→ ∀y (x 6= y → ¬P (y))

can be correctly translated as “There exists a unique person who has property P”.

Solution: False. Any x for which P (x) is false makes the entire statement true. This
is not the same as there existing a unique person with property P .

• ∃x (∀y P (x, y))→ ∀y (∃x P (x, y)) is true regardless of what predicate P is.

Solution: True. The left part of the implication is saying that there is a single x that
works for all y; the right one is saying that for every y, we can find an x that depends on
it, but the single x that works for everything will still work.
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6. [? points]
The following is the graph of a binary relation R.

• • • •

• • •
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a) Draw the transitive-reflexive closure of R.

Solution: Omitted.

• • • •

• • •

b) Let S = {(X, Y ) : X, Y ∈ P(N) ∧X ⊆ Y }.
Recall that R is antisymmetric iff ((a, b) ∈ R ∧ a 6= b)→ (b, a) 6∈ R.

Prove that S is antisymmetric.

Solution: Suppose (a, b) ∈ S and a 6= b. Then, by definition of S, a ⊂ b and there
is some x ∈ b where x 6∈ a (since they aren’t equal). Then, (b, a) 6∈ S, because b 6⊆ a,
because x ∈ b and x 6∈ a. So, S is antisymmetric.
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7. [? points]
Convert the following NFA into a DFA using the algorithm from lecture.

q0 q1 q2

ε

1

1

1

0

1

Solution: Omitted.
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8. [? points]
Let Σ = {0, 1, 2}. Construct a DFA that recognizes exactly strings with a 0 in all positions i
where i mod 3 = 0.
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Solution: Omitted.
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