CSE 311 Foundations of Computing I

Lecture XX
RSA Encryption and Decryption
Spring 2013

• First developed in 1976 by Diffie-Hellman using number theory problems

Public Key Encryption/Decryption

 Rivest-Shamir-Adleman (RSA) came up with a simpler number theory-based method that is in use today

Public Key Encryption/Decryption

- Bob wants people to be able to send him secret messages so he creates
 - An encryption key PK which he makes public along with an encryption algorithm E_{PK}
 - A decryption key SK which he keeps secret along with a decryption algorithm D_{SK}
 - Requirement: $D_{SK}(E_{PK}(m))=m$
- If Alice wants to send a message m to Bob she
 - Computes C=E_{PK}(m) and sends it to Bob
 - Bob computes D_{SK}(C) which equals m

2

RSA Encryption/Decryption

- Bob choose two random large prime numbers p and q and computes N=pq
 - Usually p and q are 512 or 1024 bits long
 - We won't worry about how Bob does this
- Bob chooses a some big odd number e < N
- PK=(e,N): E_{PK}(m)=m^e mod N
 - Computable quickly using fast modular exponentiation
- SK=(d,p,q): D_{SK}(C)=C^d mod N where d depends on e, p, and q
 - Computable quickly using fast modular exponentiation
- We need that $(m^e)^d = m^{ed} \equiv m \pmod{N}$
 - How does Bob find such a d?

4

Modular Equations and \mathbb{Z}_{N}^{\times}

Recall: If gcd(a,N)=1 then we can solve $ax \equiv b \pmod{N}$ for a unique value x between 0 and N-1

Idea: Apply Euclid's algorithm for gcd(a,N) and then substitute back to write 1=sa+tN where 0<s<N Then sa \equiv 1 (mod N) so x \equiv sax \equiv sb (mod N)

Definition: Let $\mathbb{Z}_{N}^{\times} = \{ a : 0 < a < N \text{ and } gcd(a,N)=1 \}$

We will show that properties of \mathbb{Z}_{N}^{\times} will help us understand exponentiation modulo N

For N=pq, how many elements in $\mathbb{Z}_{N}^{\times} = \{ a : 0 < a < N \text{ and } gcd(a,N)=1 \} ?$

- N=pq and both p and q are prime numbers
 - Only elements between 0 and N-1 not in \mathbb{Z}_{N}^{\times} are divisible by p or by q
 - There are q different multiples of p
 - There are p different multiples of q
 - Only 0 is a multiple of both
 - Total is N-p-q+1=pq-p-q+1=(p-1)(q-1)
- Standard notation: We write $\phi(N) = |\mathbb{Z}_{N}^{\times}|$

Properties of $\mathbb{Z}_{N}^{\times} = \{ a : 0 < a < N \text{ and } gcd(a,N)=1 \}$

- (Multiply) If $a,b \in \mathbb{Z}_{N}^{\times}$ then $ab \mod N \in \mathbb{Z}_{N}^{\times}$
 - Since a and b don't have any common factor with
 N, ab won't have any common factor with N
 - Taking it mod N won't change that
- (Divide) If $a,b \in \mathbb{Z}_{N}^{\times}$ then there is a unique $x \in \mathbb{Z}_{N}^{\times}$ such that $ax \equiv b \pmod{N}$
 - By the usual Euclid's algorithm we can write
 1=sa+tN for some s, t with 0<s<N. (a⁻¹=s mod N)
 - Therefore $s \in \mathbb{Z}_{N}^{\times}$ and so x=sb mod $N \in \mathbb{Z}_{N}^{\times}$

Euler's Theorem and RSA

Theorem: For every $a \in \mathbb{Z}_{N}^{\times}$, $a^{\phi(N)} \equiv 1 \pmod{N}$

More generally, for any $a \in \mathbb{Z}_{N}^{\times}$ and integer $k \ge 0$, $a^k \equiv a^{k \mod \phi(N)} \pmod{N}$

In RSA we want d such that $a^{de} \equiv a^1 \pmod{N}$ i.e. find a d such that: $1 = de \mod{\phi(N)}$ equivalently, solve: $ex \equiv 1 \pmod{(p-1)(q-1)}$ Can do this if gcd(e, (p-1)(q-1)) = 1.

8

Theorem: For every $a \in \mathbb{Z}_{N}^{\times}$, $a^{\phi(N)} \equiv 1 \pmod{N}$

Proof:

Let $a \in \mathbb{Z}_{N}^{\times}$ and consider function $f_a : \mathbb{Z}_{N}^{\times} \to \mathbb{Z}_{N}^{\times}$ given by $f_a(x) = ax \mod N$

- Output of f_a is in \mathbb{Z}^{\times}_{N} by Multiplication property
- $-f_a$ is 1-1 by Division property since ab mod N=ac mod N implies $b\equiv c \pmod{N}$.

We now look at the product of all elements in \mathbb{Z}_{N}^{\times} modulo N in two different ways

Graph of fa

Therefore, mod N, product of all \mathbf{x} for $\mathbf{x} \in \mathbb{Z}_{N}^{\times} \equiv \text{product of all } \mathbf{x} \in \mathbb{Z}_{N}^{\times}$

In equations

$$\prod_{\mathbf{x} \in \mathbb{Z}_N^{\mathsf{x}}} \mathbf{x} \ \equiv \ \prod_{\mathbf{x} \in \mathbb{Z}_N^{\mathsf{x}}} \mathsf{ax} \ (\mathsf{mod} \ \mathsf{N})$$

$$\equiv \mathbf{a}^{\phi(N)} \prod_{\mathbf{x} \in \mathbb{Z}_N^{\mathsf{x}}} \mathbf{x} \ (\mathsf{mod} \ N)$$

 $\prod_{\mathbf{x} \in \mathbb{Z}^{\mathbf{x}}_{N}} \mathbf{x} \mod N \in \mathbb{Z}^{\mathbf{x}}_{N}$ by Multiplicative property so we can divide both sides by it to get

$$\mathbf{1} \equiv \mathbf{a}^{\phi(N)} \pmod{N}$$

Constraints on RSA

- The message has to be in \mathbb{Z}_{N}^{\times}
 - Rule out message 0 and for the rest, you will never see a message divisible by p or q
- The exponent e has to have gcd(e, (p-1)(q-1))=1
 - E.g. p,q will be odd so e can't be even
 - Bob can check this when he chooses e and make sure this doesn't happen

12