CSE 311 Foundations of Computing I

Lecture XX
RSA Encryption and Decryption
Spring 2013

Public Key Encryption/Decryption

- Bob wants people to be able to send him secret messages so he creates
- An encryption key PK which he makes public along with an encryption algorithm E_{PK}
- A decryption key SK which he keeps secret along with a decryption algorithm $D_{S K}$
- Requirement: $\mathrm{D}_{\mathrm{SK}}\left(\mathrm{E}_{\mathrm{PK}}(\mathrm{m})\right)=\mathrm{m}$
- If Alice wants to send a message m to Bob she
- Computes $\mathrm{C}=\mathrm{E}_{\mathrm{PK}}(\mathrm{m})$ and sends it to Bob
- Bob computes $\mathrm{D}_{\mathrm{sk}}(\mathrm{C})$ which equals m

Public Key Encryption/Decryption

- First developed in 1976 by Diffie-Hellman using number theory problems
- Rivest-Shamir-Adleman (RSA) came up with a simpler number theory-based method that is in use today

RSA Encryption/Decryption

- Bob choose two random large prime numbers p and q and computes $\mathrm{N}=\mathrm{pq}$
- Usually p and q are 512 or 1024 bits long
- We won't worry about how Bob does this
- Bob chooses a some big odd number $\mathrm{e}<\mathrm{N}$
- $P K=(e, N): E_{P K}(m)=m^{e} \bmod N$
- Computable quickly using fast modular exponentiation
- $S K=(d, p, q): D_{S K}(C)=C^{d}$ mod N where d depends on

$$
e, p, \text { and } q
$$

- Computable quickly using fast modular exponentiation
- We need that $\left(m^{e}\right)^{d}=m^{\text {ed }} \equiv m(\bmod N)$
- How does Bob find such a d?

Modular Equations and $\mathbb{Z}^{\times}{ }_{N}$

Recall: If $\operatorname{gcd}(a, N)=1$ then we can solve $a x \equiv b(\bmod N)$ for a unique value x between 0 and $\mathrm{N}-1$
Idea: Apply Euclid's algorithm for $\operatorname{gcd}(\mathrm{a}, \mathrm{N})$ and then substitute back to write $1=s a+t N$ where $0<s<N$ Then sa $\equiv 1(\bmod N)$ so $x \equiv \operatorname{sax} \equiv \operatorname{sb}(\bmod N)$

Definition: Let $\mathbb{Z}^{\times}{ }_{N}=\{a: 0<a<N$ and $\operatorname{gcd}(a, N)=1\}$
We will show that properties of $\mathbb{Z}^{\times}{ }_{N}$ will help us understand exponentiation modulo N

> Properties of $\mathbb{Z}_{N}^{\times}=\{a: 0<a<N$ and $\operatorname{gcd}(a, N)=1\}$

- (Multiply) If $a, b \in \mathbb{Z}^{\times}{ }_{N}$ then $a b \bmod N \in \mathbb{Z}^{\times}{ }_{N}$
- Since a and b don't have any common factor with N, ab won't have any common factor with N
- Taking it mod N won't change that
- (Divide) If $a, b \in \mathbb{Z}^{x}$ then there is a unique $x \in \mathbb{Z}^{\times}{ }_{N}$ such that $a x \equiv b(\bmod N)$
- By the usual Euclid's algorithm we can write $1=s a+t N$ for some s, t with $0<s<N$. $\left(a^{-1}=s \bmod N\right)$
- Therefore $s \in \mathbb{Z}^{\times}{ }_{N}$ and so $x=s b \bmod N \in \mathbb{Z}^{\times}{ }_{N}$

For $N=p q$, how many elements in $\mathbb{Z}^{\times}{ }_{N}=\{a: 0<a<N$ and $\operatorname{gcd}(a, N)=1\} ?$

- $N=p q$ and both p and q are prime numbers
- Only elements between 0 and $N-1$ not in $\mathbb{Z}^{\times}{ }_{N}$ are divisible by p or by q
- There are q different multiples of p
- There are p different multiples of q
- Only 0 is a multiple of both
- Total is $N-p-q+1=p q-p-q+1=(p-1)(q-1)$
- Standard notation: We write $\varphi(N)=\left|\mathbb{Z}^{\times}{ }_{N}\right|$

Euler's Theorem and RSA

Theorem: For every $a \in \mathbb{Z}^{\times}{ }_{N}, a^{\varphi(N)} \equiv 1(\bmod N)$
More generally, for any $a \in \mathbb{Z}^{\times}{ }_{N}$ and integer $k \geq 0$,

$$
a^{k} \equiv a^{k \bmod \varphi(N)}(\bmod N)
$$

In RSA we want d such that $a^{d e} \equiv a^{1}(\bmod N)$
i.e. find a d such that: $1=\operatorname{de} \bmod \varphi(N)$ equivalently, solve: $e x \equiv 1(\bmod (p-1)(q-1))$
Can do this if $\operatorname{gcd}(\mathrm{e},(\mathrm{p}-1)(\mathrm{q}-1))=1$.

Theorem: For every $a \in \mathbb{Z}^{\times}{ }_{N}, a^{\varphi(N)} \equiv 1(\bmod N)$

Proof:

Let $a \in \mathbb{Z}^{\times}{ }_{N}$ and consider function $f_{a}: \mathbb{Z}^{\times}{ }_{N} \rightarrow \mathbb{Z}^{\times}{ }_{N}$ given by $f_{a}(x)=a x \bmod N$

- Output of f_{a} is in \mathbb{Z}_{N} by Multiplication property
$-f_{a}$ is 1-1 by Division property since
$a b \bmod N=a c \bmod N$ implies $b \equiv c(\bmod N)$.

We now look at the product of all elements in $\mathbb{Z}^{\times}{ }_{N}$ modulo N in two different ways

Graph of f_{a}

Therefore, $\bmod \mathrm{N}$,
product of all \mathbf{x} for $\mathbf{x} \in \mathbb{Z}^{\times}{ }_{N} \equiv$ product of all $\mathbf{a x}$ for all $\mathbf{x} \in \mathbb{Z}^{\times}{ }_{N}$

In equations

$$
\begin{aligned}
\prod_{x \in \mathbb{Z}^{\times}} x & \equiv \prod_{x \in \mathbb{Z}_{N}} a x(\bmod N) \\
& \equiv a^{\varphi(N)} \prod_{x \in \mathbb{Z}_{N}} x(\bmod N)
\end{aligned}
$$

$\prod_{x \in \mathbb{Z}_{N}} x \bmod N \in \mathbb{Z}^{\times} N$ by Multiplicative property so we can divide both sides by it to get

$$
1 \equiv \mathbf{a}^{\varphi(N)}(\bmod N)
$$

Constraints on RSA

- The message has to be in $\mathbb{Z}^{\times}{ }_{N}$
- Rule out message 0 and for the rest, you will never see a message divisible by p or q
- The exponent e has to have $\operatorname{gcd}(\mathrm{e},(\mathrm{p}-1)(\mathrm{q}-1))=1$
- E.g. p,q will be odd so e can't be even
- Bob can check this when he chooses e and make sure this doesn't happen

