CSE 311 Foundations of Computing I

Lecture 28
Computability Review, Course
Summary
Spring 2013

What makes the Halting Problem and related problems hard?

- Figuring out in some finite time something about what might happen in the infinite # of steps that a general computation might take
 - e.g. having H(<P>,x) output 0 when P doesn't halt on x
- The following program does exist and won't generate any contradiction
 - Function V(x):
 - if U(x,x) halts then
 while (true); /* loop forever */
 - else
 - no-op; /* do nothing and halt */
 - endif

Announcements

- Hand in Homework 8 now
- Pick up all old homework now
- Review session
 - Sunday, June 9, 4 pm, EEB 125
 - List of Final Exam Topics and sampling of some typical kinds of exam questions on the web
 - Bring your questions to the review session!
- Final exam
 - Monday, June 10, 2:30-4:20 pm, MGH 389

The "Always Halting" problem

Suppose we had a TM A for the Always Halting problem

We designed <**Q**> based on <**P**> and **x** so that: <**Q**> always halts ⇔ <**P**> halts on input **x**

So.. if **A** exists then we get a program **H** for the ordinary halting problem, which we know can't exist so **A** can't exist

The "Always ERROR" problem

Suppose we had a TM E for the ERROR problem

We designed <**R**> based on <**Q**> so that: <**R**> always prints "ERROR" ⇔ <**Q**> always halts

So.. if **E** exists then we get a program **A** for the Always Halts problem, which we know can't exist so **E** can't exist

A general phenomenon: Can't tell a book by its cover

Rice's Theorem: In general there is no way to tell anything about the input/output (I/O) behavior of a program P just given its code <P>!

6

Quick lessons

- Don't rely on the idea of improved compilers and programming languages to eliminate major programming errors
 - truly safe languages can't possibly do general computation
- Document your code!!!!
 - there is no way you can expect someone else to figure out what your program does with just your codesince....in general it is provably impossible to do this!

CSE 311 Foundations of Computing I

Spring 2013
Course Summary

About the course

- From the CSE catalog:
 - CSE 311 Foundations of Computing I (4)
 Examines fundamentals of logic, set theory, induction, and algebraic structures with applications to computing; finite state machines; and limits of computability. Prerequisite: CSE 143; either MATH 126 or MATH 136.
- What this course is about:
 - Foundational structures for the practice of computer science and engineering

Propositional Logic

- Statements with truth values
 - The Washington State flag is red
 - It snowed in Whistler, BC on January 4, 2011.
 - Rick Perry won the Iowa straw poll
 - Space aliens landed in Roswell, New Mexico
 - If n is an integer greater than two, then the equation aⁿ + bⁿ = cⁿ has no solutions in non-zero integers a, b, and c.
- Propositional variables: p, q, r, s, . . .
- Truth values: **T** for true, **F** for false
- Compound propositions

 $\begin{array}{lll} \text{Negation (not)} & \neg \ \mathsf{p} \\ \text{Conjunction (and)} & p \wedge q \\ \text{Disjunction (or)} & p \vee q \\ \text{Exclusive or} & p \oplus q \\ \text{Implication} & p \rightarrow q \\ \text{Biconditional} & p \leftrightarrow q \\ \end{array}$

English and Logic

- You cannot ride the roller coaster if you are under 4 feet tall unless you are older than 16 years old
 - -q: you can ride the roller coaster
 - r: you are under 4 feet tall
 - s: you are older than 16

$$(r \land \neg s) \rightarrow \neg q$$

Logical equivalence

- Terminology: A compound proposition is a
 - Tautology if it is always true
 - Contradiction if it is always false
 - Contingency if it can be either true or false

$$p \lor \neg p$$

$$p \oplus p$$

$$(p \to q) \land p$$

$$(p \land q) \lor (p \land \neg q) \lor (\neg p \land q) \lor (\neg p \land \neg q)$$

Logical Equivalence

- p and q are logically equivalent iff $p \leftrightarrow q$ is a tautology
- The notation p = q denotes p and q are logically equivalent
- De Morgan's Laws:

$$\neg (p \land q) \equiv \neg p \lor \neg q$$
$$\neg (p \lor q) \equiv \neg p \land \neg q$$

Digital Circuits

- Computing with logic
 - T corresponds to 1 or "high" voltage
 - F corresponds to 0 or "low" voltage
- Gates
 - Take inputs and produce outputs
 - Functions
 - Several kinds of gates
 - Correspond to propositional connectives
 - Only symmetric ones (order of inputs irrelevant)

13

Combinational Logic Circuits

Wires can send one value to multiple gates

A simple example: 1-bit binary adder cout cin

• Inputs: A, B, Carry-in

• Outputs: Sum, Carry-out s s s s

Cout = B Cin + A Cin + A B

S = A' B' Cin + A' B Cin' + A B' Cin' + A B Cin = A' (B' Cin + B Cin') + A (B' Cin' + B Cin) = A' Z + A Z' = A xor Z = A xor (B xor Cin)

14

Boolean algebra

- An algebraic structure consists of
 - a set of elements B
 - binary operations { + , }
 - and a unary operation { '}
 - such that the following axioms hold:

```
1. the set B contains at least two elements: a, b
2. closure:
                           a + b is in B
                                                                 a • b is in B
3. commutativity:
                                                                a \cdot b = b \cdot a
                           a + (b + c) = (a + b) + c
4. associativity:
                                                                a \cdot (b \cdot c) = (a \cdot b) \cdot c
5. identity:
                           a + 0 = a
6. distributivity:
                           a + (b \cdot c) = (a + b) \cdot (a + c)
                                                                a \cdot (b + c) = (a \cdot b) + (a \cdot c)
7. complementarity: a + a' = 1
                                                                a • a' = 0
```

Sum-of-products canonical forms

- Also known as disjunctive normal form
- Also known as minterm expansion

18

Predicate Calculus

- Predicate or Propositional Function
 - A function that returns a truth value
- "x is a cat"
- "student x has taken course y"
- "X > Y"
- $\forall x P(x) : P(x)$ is true for every x in the domain
- $\exists x P(x)$: There is an x in the domain for which P(x) is true

Statements with quantifiers

• ∀ *x* (Even(*x*) ∨ Odd(*x*))

Positive Integers

• $\exists x (Even(x) \land Prime(x))$

Even(x)
Odd(x)
Prime(x)
Greater(x,y)
Equal(x,y)

Domain:

- $\forall x \exists y (Greater(y, x) \land Prime(y))$
- $\forall x (Prime(x) \rightarrow (Equal(x, 2) \lor Odd(x))$
- $\exists x \exists y (\text{Equal}(x, y + 2) \land \text{Prime}(x) \land \text{Prime}(y))$

George Boole - 1854

Proofs

- Start with hypotheses and facts
- Use rules of inference to extend set of facts
- Result is proved when it is included in the set

Simple Propositional Inference Rules

• Two inference rules per binary connective one to eliminate it, one to introduce it.

$$\begin{array}{cccc} & & & & & & & \\ & p \wedge q & & & & \\ & \vdots & p \wedge q & & \\ & p \vee q & \neg p & & & \\ & p \vee q & \neg p & & \\ & \vdots & q & & & \\ & \vdots & p \rightarrow q & & \\ & \vdots & p \rightarrow q & & \\ & \vdots & p \rightarrow q & & \\ & \vdots & p \rightarrow q & & \\ & \vdots & p \rightarrow q & & \\ \end{array}$$

21

Inference Rules for Quantifiers

P(c) for some c
∴
$$\exists x P(x)$$

$$\forall$$
 x P(x) \therefore P(a) for any a

"Let a be anything"...P(a)
$$\exists x P(x)$$

 $\therefore \forall x P(x)$ $\therefore P(c)$ for some special c

Even and Odd

Even(x) $\equiv \exists y \ (x=2y)$ Odd(x) $\equiv \exists y \ (x=2y+1)$ Domain: Integers

Prove: "The square of every odd number is odd"
 English proof of: ∀x (Odd(x)→Odd(x²))

Let x be an odd number.

Then x=2k+1 for some integer k (depending on x) Therefore $x^2=(2k+1)^2=4k^2+4k+1=2(2k^2+2k)+1$.

Since $2k^2+2k$ is an integer, x^2 is odd.

Characteristic vectors

• Let $U = \{1, ..., 10\}$, represent the set $\{1,3,4,8,9\}$ with

1011000110

- Bit operations:
 - $-0110110100 \lor 0011010110 = 0111110110$
- 1s -1

One-time pad

- · Alice and Bob privately share random n-bit vector K
 - Eve does not know K
- Later, Alice has n-bit message m to send to Bob
 - Alice computes $C = m \oplus K$
 - Alice sends C to Bob
 - Bob computes $m = C \oplus K$ which is $(m \oplus K) \oplus K$
- Eve cannot figure out m from C unless she can guess K

Arithmetic mod 7

- $a +_7 b = (a + b) \mod 7$
- $a \times_7 b = (a \times b) \mod 7$

+	0	1	2	3	4	5	6
0	0	1	2	3	4	5	6
1	1	2	3	4	5	6	0
2	2	3	4	5	6	0	1
3	3	4	5	6	0	1	2
4	4	5	6	0	1	2	3
5	5	6	0	1	2	3	4
6	6	0	1	2	3	4	5

Х	0	1	2	ფ	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	З	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	0	6	5	4	3	2	1

Division Theorem

Let *a* be an integer and *d* a positive integer. Then there are *unique* integers *q* and *r*, with $0 \le r < d$, such that a = dq + r.

$$q = a \operatorname{div} d$$
 $r = a \operatorname{mod} d$

26

Modular Arithmetic

Let a and b be integers, and m be a positive integer. We say a *is congruent to b modulo m* if m divides a - b. We use the notation $a \equiv b \pmod{m}$ to indicate that a is congruent to b modulo m.

Let a and b be integers, and let m be a positive integer. Then $a \equiv b \pmod{m}$ if and only if a mod $m = b \pmod{m}$.

Let m be a positive integer. If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $a + c \equiv b + d \pmod{m}$ and $ac \equiv bd \pmod{m}$

Let a and b be integers, and let m be a positive integer. Then $a \equiv b \pmod{m}$ if and only if a mod $m = b \pmod{m}$.

Hashing

- Map values from a large domain, 0...M-1 in a much smaller domain, 0...n-1
- Index lookup
- · Test for equality
- $Hash(x) = x \mod p$
 - (or Hash(x) = (ax + b) mod p)
- Often want the hash function to depend on all of the bits of the data
 - Collision management

Integer representation

Signed integer representation

Suppose $-2^{n-1} < x < 2^{n-1}$ First bit as the sign, n-1 bits for the value

99: 0110 0011, -18: 1001 0010

Two's complement representation

Suppose $0 \le x < 2^{n-1}$,

x is represented by the binary representation of x -x is represented by the binary representation of $2^{n}-x$

99: 0110 0011, -18: 1110 1110

Modular Exponentiation

Х	1	2	3	4	5	6
1	1	2	3	4	5	6
2	2	4	6	1	3	5
3	3	6	2	5	1	4
4	4	1	5	2	6	3
5	5	3	1	6	4	2
6	6	5	4	3	2	1

а	a¹	a ²	a^3	a ⁴	a ⁵	a^6
и	u	u .	u	u .	u	u
1	1	1	1	1	1	1
2	2	4	1	2	4	1
3	3	2	6	4	5	1
4	4	2	1	4	2	1
5	5	4	6	2	3	1
6	6	1	6	1	6	1

Arithmetic mod 7

Fast exponentiation Repeated Squaring

```
namespace _311ConsoleApp
          class Program {
                                                                                                                         ile:///C:/Users/Richard/D...
                  static void Main(string[] args) {
                                                                                                                      i: 1 exponent: 2 u: 4
i: 2 exponent: 4 u: 16
i: 3 exponent: 8 u: 256
i: 4 exponent: 8 u: 256
i: 5 exponent: 32 u: 7296
i: 6 exponent: 128 u: 1456
i: 7 exponent: 128 u: 1456
i: 8 exponent: 52 u: 4996
i: 9 exponent: 128 u: 256
i: 10 exponent: 124 u: 7256
i: 11 exponent: 124 u: 7256
i: 11 exponent: 14996
i: 12 exponent: 14996
i: 13 exponent: 1538 u: 6816
i: 15 exponent: 16384 u: 6816
i: 15 exponent: 16384 u: 6816
i: 15 exponent: 65536 u: 6736
                                                                                                                                   exponent: 2 v: 4
                         FastExp(2, 16, 10000);
                         System.Console.ReadLine();
                  static int FastExp(int x, int n, int modulus) {
                         long v = (long)x;
                         int exp = 1;
                         for (int i = 1; i <= n; i++) {
                                 v = (v * v) % modulus;
                                 exp = exp + exp;
                                 System.Console.WriteLine("i: " + i
                                        + " exponent: " + exp + " v: " + v);
                        return (int)v;
        }
```

Primality

An integer p greater than 1 is called *prime* if the only positive factors of p are 1 and p.

A positive integer that is greater than 1 and is not prime is called composite.

Fundamental Theorem of Arithmetic: Every positive integer greater than 1 has a unique prime factorization

33

35

2.4

GCD and Factoring

```
a = 2^{3} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11 = 46,200
b = 2 \cdot 3^{2} \cdot 5^{3} \cdot 7 \cdot 13 = 204,750
GCD(a, b) = 2^{\min(3,1)} \cdot 3^{\min(1,2)} \cdot 5^{\min(2,3)} \cdot 7^{\min(1,1)} \cdot 11^{\min(1,0)} \cdot 13^{\min(0,1)}
```

Euclid's Algorithm

• GCD(x, y) = GCD(y, x mod y)

```
int GCD(int a, int b){    /* a >= b,    b > 0 */
    int tmp;
    int x = a;
    int y = b;
    while (y > 0){
        tmp = x % y;
        x = y;
        y = tmp;
    }
    return x;
}
```

Multiplicative Inverse mod m

Suppose GCD(a, m) = 1

By Bézoit's Theorem, there exist integers s and t such that sa + tm = 1.

s mod m is the multiplicative inverse of a:

$$1 = (sa + tm) \mod m = sa \mod m$$

Induction proofs

$$\begin{array}{c} P(0) \\ \frac{\forall \ k \ (P(k) \rightarrow P(k+1))}{\forall \ n \ P(n)} \end{array}$$

1. Prove P(0)

2.Let k be an arbitrary integer ≥ 0

3. Assume that P(k) is true

4. ...

5. Prove P(k+1) is true

 $6.P(k) \rightarrow P(k+1)$

7. \forall k (P(k) \rightarrow P(k+1))

8. ∀ n P(n)

Direct Proof Rule Intro ∀ from 2-6 Induction Rule 1&7

37

Strong Induction

$$\begin{array}{c} P(0) \\ \forall \ k \ ((P(0) \land P(1) \land P(2) \land \dots \land P(k)) \rightarrow P(k+1)) \\ \therefore \ \forall \ n \ P(n) \end{array}$$

Recursive definitions of functions

•
$$F(0) = 0$$
; $F(n + 1) = F(n) + 1$;

•
$$G(0) = 1$$
; $G(n + 1) = 2 \times G(n)$;

•
$$0! = 1$$
; $(n+1)! = (n+1) \times n!$

•
$$f_0 = 0$$
; $f_1 = 1$; $f_n = f_{n-1} + f_{n-2}$

Strings

- The set Σ^* of strings over the alphabet Σ is defined
 - Basis: $\lambda \in S$ (λ is the empty string)
 - Recursive: if $w \in \Sigma^*$, $x \in \Sigma$, then $wx \in \Sigma^*$
- Palindromes: strings that are the same backwards and forwards.
 - Basis: λ is a palindrome and any $a \in \Sigma$ is a palindrome
 - If p is a palindrome then apa is a palindrome for every $a \in \Sigma$

Function definitions on recursively defined sets

Len(
$$\lambda$$
) = 0;
Len(wx) = 1 + Len(w); for w $\in \Sigma^*$, x $\in \Sigma$

Concat(w,
$$\lambda$$
) = w for w $\in \Sigma^*$
Concat(w₁,w₂x) = Concat(w₁,w₂)x for w₁, w₂ in Σ^* , x $\in \Sigma$

Prove:

Len(Concat(x,y))=Len(x)+Len(y) for all strings x and y

Rooted Binary trees

- Basis: is a rooted binary tree
- Recursive Step: If T_1 and T_2 are rooted

binary trees then so is:

Functions defined on rooted binary trees

• size(•)=1

• size(
$$T_1$$
) = 1+size(T_1)+size(T_2)

- height(•)=0
- height(T_1)=1+max{height(T_1),height(T_2)}

Prove:

For every rooted binary tree T, $size(T) \le 2^{height(T)+1} - 1$

Regular Expressions over Σ

- Each is a "pattern" that specifies a set of strings
- Basis:
 - \varnothing , λ are regular expressions
 - **a** is a regular expression for any a ∈ Σ
- Recursive step:
 - If **A** and **B** are regular expressions then so are:
 - $(A \cup B)$
 - (AB)
 - A*

Regular Expressions

- · 0*
- · 0*1*
- (**0** ∪ **1**)*
- · (0*1*)*
- (0 ∪ 1) * 0110 (0 ∪ 1) *
- $(0 \cup 1)*(0110 \cup 100)(0 \cup 1)*$

Context-Free Grammars

• Example: $S \to 0S0 \mid 1S1 \mid 0 \mid 1 \mid \lambda$

• Example: $S \rightarrow 0S \mid S1 \mid \lambda$

Sample Context-Free Grammars

- Grammar for {0ⁿ1ⁿ : n≥ 0} all strings with same # of 0's and 1's with all 0's before 1's.
- Example: $S \rightarrow (S) \mid SS \mid \lambda$

Building in Precedence in Simple Arithmetic Expressions

- **E** expression (start symbol)
- T term F factor I identifier N number

 $E \rightarrow T \mid E+T$

 $T \rightarrow F \mid F^*T$

 $F \rightarrow (E) \mid I \mid N$

 $I \rightarrow x \mid y \mid z$

 $N \rightarrow 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9$

BNF for C

```
((identifier | "case" constant-expression | "default") ":")*
  (expression? ";" |
   "if" "(" expression ")" statement |
   "if" "(" expression ")" statement "else" statement |
   "switch" "(" expression ")" statement |
"while" "(" expression ")" statement |
   "do" statement "while" "(" expression ")" ";" |
   "for" "(" expression? ";" expression? ";" expression? ")" statement
   "goto" identifier ";" |
    "continue" ";" |
   "break" ";" |
   "return" expression? ";"
block: "{" declaration* statement* "}"
expression:
  assignment-expression%
assignment-expression: (
    unary-expression (
      "=" | "*=" | "/=" | "%=" | "+=" | "-=" | "<<=" | ">>=" | "&=" |
  ) * conditional-expression
conditional-expression:
  logical-OR-expression ( "?" expression ":" conditional-expression )?
```

Definition of Relations

Let A and B be sets,

A binary relation from A to B is a subset of $A \times B$

Let A be a set,

A binary relation on A is a subset of $A \times A$

Let R be a relation on A

R is reflexive iff $(a,a) \in R$ for every $a \in A$

R is symmetric iff $(a,b) \in R$ implies $(b, a) \in R$

R is antisymmetric iff $(a,b) \in R$ and $a \neq b$ implies $(b,a) \in R$

R is transitive iff $(a,b) \in R$ and $(b,c) \in R$ implies $(a,c) \in R$

Combining Relations

Let R be a relation from A to B Let S be a relation from B to C The composite of R and S, S ° R is the relation from A to C defined

 $S \circ R = \{(a, c) \mid \exists b \text{ such that } (a,b) \in R \text{ and } (b,c) \in S\}$

Relations

(a,b)∈ Parent: b is a parent of a (a,b)∈ Sister: b is a sister of a

Aunt = Sister ° Parent

Grandparent = Parent ° Parent

 $R^2 = R \circ R = \{(a, c) \mid \exists b \text{ such that } (a,b) \in R \text{ and } (b,c) \in R\}$

$$R^0 = \{(a,a) \mid a \in A\}$$

 $R^1 = R$
 $R^{n+1} = R^n \circ R$

 $S \circ R = \{(a, c) \mid \exists b \text{ such that } (a,b) \in R \text{ and } (b,c) \in S\}$

n-ary relations

Let $A_1, A_2, ..., A_n$ be sets. An n-ary relation on these sets is a subset of $A_1 \times A_2 \times ... \times A_n$.

Student_ID	Name	GPA
328012098	Knuth	4.00
481080220	Von Neuman	3.78
238082388	Russell	3.85
238001920	Einstein	2.11
1727017	Newton	3.61
348882811	Karp	3.98
2921938	Bernoulli	3.21
2921939	Bernoulli	3.54

Student_ID	Major
328012098	CS
481080220	CS
481080220	Mathematics
238082388	Philosophy
238001920	Physics
1727017	Mathematics
348882811	CS
1727017	Physics
2921938	Mathematics
2921939	Mathematics ₄

Matrix representation for relations

Relation R on $A=\{a_1, ..., a_p\}$

$$m_{ij} = \begin{cases} 1 \text{ if } (a_i, a_j) \in R, \\ 0 \text{ if } (a_i, a_j) \notin R. \end{cases}$$

 $\{(1,\,1),\,(1,\,2),\,\,(1,\,4),\,\,(2,1),\,\,(2,3),\,(3,2),\,(3,\,3)\,\,(4,2)\,\,(4,3)\}$

Representation of relations

Directed Graph Representation (Digraph)

$$\{(a, b), (a, a), (b, a), (c, a), (c, d), (c, e) (d, e)\}$$

Paths in relations

Let R be a relation on a set A. There is a path of length n from a to b if and only if $(a,b) \in R^n$

(a,b) is in the transitive-reflexive closure of R if and only if there is a path from a to b. (Note: by definition, there is a path of length 0 from a to a.)

Finite state machines

States

Transitions on inputs

Start state and finals states

The language recognized by a machine is the set of strings that reach a final state

State	0	1
s_0	s_0	S ₁
S ₁	s_0	S_2
S_2	S ₀	s_3
s_3	s_3	s_3

Accepts strings with an odd number of 1's and an odd number of 0's

Product construction

- Combining FSMs to check two properties at once
 - New states record states of both FSMs

State machines with output

	Inp	Output	
State	L	R	
S ₁	S ₁	S ₂	Веер
s_2	S ₁	S ₃	
s_3	S_2	S ₄	
S ₄	S ₃	S ₄	Веер

"Tug-of-war"

62

Vending Machine

61

Enter 15 cents in dimes or nickels Press S or B for a candy bar

Vending Machine, Final Version

State minimization

Finite State Machines with output at states

Another way to look at DFAs

Definition: The label of a path in a DFA is the concatenation of all the labels on its edges in order

Lemma: x is in the language recognized by a DFA iff x labels a path from the start state to some final state

66

Nondeterministic Finite Automaton (NFA)

- Graph with start state, final states, edges labeled by symbols (like DFA) but
 - Not required to have exactly 1 edge out of each state labeled by each symbol - can have 0 or >1
 - Also can have edges labeled by empty string $\boldsymbol{\lambda}$
- Definition: x is in the language recognized by an NFA iff x labels a path from the start state to some final state

67

Nondeterministic Finite Automaton

Accepts strings with a 1 three positions from the end of the string

Building a NFA from a regular expression

(01 ∪1)*0

69

NFA to DFA: Subset construction

The set B of binary palindromes cannot be recognized by any DFA

Consider the infinite set of strings $S=\{\lambda, 0, 00, 000, 0000, ...\}$

Claim: No two strings in S can end at the same state of any DFA for B, so no such DFA can exist

Proof: Suppose n≠m and 0ⁿ and 0^m end at the same state p.

Since 0ⁿ10ⁿ is in B, following 10ⁿ after state p must lead to a final state.

But then the DFA would accept 0^m10ⁿ which is a contradiction

Cardinality

- A set S is countable iff we can write it as S={s₁, s₂, s₃, ...} indexed by N
- Set of integers is countable
 {0, 1, -1, 2, -2, 3, -3, 4, . . .}
- Set of rationals is countable
 "dovetailing"

5/1 5/2 5/3 5/4 5/5 5/6 5/7 ...
6/1 6/2 6/3 6/4 6/5 6/6 ...
7/1 7/2 7/3 7/4 7/5
...

- Σ^* is countable - $\{0,1\}^* = \{0,1,00,01,10,11,000,001,010,011,100,101,...\}$
- Set of all (Java) programs is countable

70

The real numbers are not countable

• "diagonalization"

General models of computation

Control structures with infinite storage
Many models
Turing machines
Functional
Recursion
Java programs

Church-Turing Thesis

Any reasonable model of computation that includes all possible algorithms is equivalent in power to a Turing machine

73

74

What is a Turing Machine?

Halting Problem

- Given: the code of a program P and an input x for P, i.e. given (<P>,x)
- Output: 1 if P halts on input x
 0 if P does not halt on input x

Theorem (Turing): There is no program that solves the halting problem "The halting problem is undecidable"

Suppose H(P>,x) solves the Halting problem

```
Does D halt on input <D>?
```

```
Function D(x):

if H(x,x)=1 then

while (true); /* loop forever */
else

no-op; /* do nothing and halt */
endif
```

D halts on input <D>

 \Leftrightarrow H outputs 1 on input ($\langle D \rangle, \langle D \rangle$)

[since **H** solves the halting problem and so **H**(**<D>**,**x**) outputs **1** iff **D** halts on input **x**]

⇔ D runs forever on input <D>

[since **D** goes into an infinite loop on \mathbf{x} iff $\mathbf{H}(\mathbf{x},\mathbf{x})=\mathbf{1}$]

Does a program have a divide by 0 error?

Claim: The divide by zero problem is undecidable

77

78

Program equivalence

Claim: The equivalent program problem is undecidable

Teaching evaluation

 Please answer the questions on both sides of the form. This includes the ABET questions on the back