CSE 311 Foundations of Computing I

Lecture 28
Computability Review, Course Summary Spring 2013

Announcements

- Hand in Homework 8 now
- Pick up all old homework now
- Review session
- Sunday, June 9, 4 pm, EEB 125
- List of Final Exam Topics and sampling of some typical kinds of exam questions on the web
- Bring your questions to the review session!
- Final exam
- Monday, June 10, 2:30-4:20 pm, MGH 389

What makes the Halting Problem and related problems hard?

- Figuring out in some finite time something about what might happen in the infinite \# of steps that a general computation might take
- e.g. having $H(<P>, x)$ output 0 when P doesn't halt on x
- The following program does exist and won't generate any contradiction
- Function V(x):
- if $\mathbf{U}(\mathbf{x}, \mathbf{x})$ halts then
- while (true); /* loop forever */
- else
- no-op; /* do nothing and halt */
- endif

The "Always Halting" problem

Suppose we had a TM A for the Always Halting problem

So.. if \mathbf{A} exists then we get a program \mathbf{H} for the ordinary halting problem, which we know can't exist so A can't exist

The "Always ERROR" problem

Suppose we had a TM E for the ERROR problem

We designed <R> based on <Q> so that:
$<$ R $>$ always prints "ERROR" $\Leftrightarrow<$ Q $>$ always halts
So.. if \mathbf{E} exists then we get a program \mathbf{A} for the Always Halts problem, which we know can't exist so E can't exist

A general phenomenon: Can't tell a book by its cover

Rice's Theorem: In general there is no way to tell anything about the input/output (I/O) behavior of a program P just given its code $<\mathrm{P}>$!

Quick lessons

- Don't rely on the idea of improved compilers and programming languages to eliminate major programming errors
- truly safe languages can't possibly do general computation
- Document your code!!!!
- there is no way you can expect someone else to figure out what your program does with just your codesince....in general it is provably impossible to do this!

CSE 311 Foundations of Computing I

Spring 2013
Course Summary

About the course

- From the CSE catalog:
- CSE 311 Foundations of Computing I (4)

Examines fundamentals of logic, set theory, induction, and algebraic structures with applications to computing; finite state machines; and limits of computability. Prerequisite: CSE 143; either MATH 126 or MATH 136.

- What this course is about:
- Foundational structures for the practice of computer science and engineering

Propositional Logic

- Statements with truth values
- The Washington State flag is red
- It snowed in Whistler, BC on January 4, 2011.
- Rick Perry won the lowa straw poll
- Space aliens landed in Roswell, New Mexico
- If n is an integer greater than two, then the equation $a^{n}+b^{n}=c^{n}$ has no solutions in non-zero integers a, b, and c.
- Propositional variables: p, q, r, s, \ldots
- Truth values: \mathbf{T} for true, \mathbf{F} for false
- Compound propositions

Negation (not)	$\neg p$
Conjunction (and)	$p \wedge q$
Disjunction (or)	$p \vee q$
Exclusive or	$p \oplus q$
Implication	$p \rightarrow q$
Biconditional	$p \leftrightarrow q$

English and Logic

- You cannot ride the roller coaster if you are under 4 feet tall unless you are older than 16 years old
$-q$: you can ride the roller coaster
- r : you are under 4 feet tall
- s: you are older than 16

$$
(r \wedge \neg s) \rightarrow \neg q
$$

Logical equivalence

- Terminology: A compound proposition is a
- Tautology if it is always true
- Contradiction if it is always false
- Contingency if it can be either true or false
$p \vee \neg p$
$p \oplus p$
$(p \rightarrow q) \wedge p$
$(p \wedge q) \vee(p \wedge \neg q) \vee(\neg p \wedge q) \vee(\neg p \wedge \neg q)$

Logical Equivalence

- p and q are logically equivalent iff $p \leftrightarrow q$ is a tautology
- The notation $p \equiv q$ denotes p and q are logically equivalent
- De Morgan's Laws:

$$
\begin{aligned}
& \neg(\mathrm{p} \wedge q) \equiv \neg \mathrm{p} \vee \neg \mathrm{q} \\
& \neg(\mathrm{p} \vee \mathrm{q}) \equiv \neg \mathrm{p} \wedge \neg \mathrm{q}
\end{aligned}
$$

Digital Circuits

- Computing with logic
- T corresponds to 1 or "high" voltage
- F corresponds to 0 or "low" voltage
- Gates
- Take inputs and produce outputs
- Functions
- Several kinds of gates
- Correspond to propositional connectives
- Only symmetric ones (order of inputs irrelevant)

Combinational Logic Circuits

Wires can send one value to multiple gates

A simple example: 1-bit binary adder

- Inputs: A, B, Carry-in
- Outputs: Sum, Carry-out | s | S | S | S | S | B |
| :--- | :--- | :--- | :--- | :--- | :--- |

$S=A^{\prime} B^{\prime} \mathrm{Cin}+\mathrm{A}^{\prime} \mathrm{BCin}{ }^{\prime}+A B^{\prime} \mathrm{Cin}^{\prime}+A B C i n$
$=A^{\prime}\left(B^{\prime} \mathrm{Cin}+B \mathrm{Cin}^{\prime}\right)+A\left(B^{\prime} \mathrm{Cin}^{\prime}+B \mathrm{Cin}\right)$
$=A \operatorname{xor} Z=A \operatorname{xor}(B \operatorname{xor} C i n)$

Boolean algebra

Sum-of-products canonical forms

- An algebraic structure consists of
- a set of elements B
- binary operations $\{+, \bullet\}$
- and a unary operation \{ ' \}
- such that the following axioms hold:

1. the set B contains at least two elements: a, b
2. closure:
3. commutativity:
4. associativity:
5. identity:
6. distributivity
7. complementarity:
$a+b$ is in B
$a+b=b+a$
$a+b=b+a \quad a \cdot b=b \cdot a$
$a+(b+c)=(a+b)+c$
$a+0=a$
$a+(b \cdot c)=(a+b) \cdot(a+c)$ $a+a^{\prime}=1$
$a \cdot b=b \cdot a$
$a \cdot(b \cdot c)=(a \cdot b) \cdot c$
$a \cdot 1=a$
$a \cdot(b+c)=(a \cdot b)+(a \cdot c)$
$a \cdot a^{\prime}=0$

George Boole - 1854

- Also known as disjunctive normal form
- Also known as minterm expansion

Statements with quantifiers

- $\forall x(\operatorname{Even}(x) \vee \operatorname{Odd}(x))$
- $\exists x(\operatorname{Even}(x) \wedge \operatorname{Prime}(x))$
- $\forall x \exists y(\operatorname{Greater}(y, x) \wedge \operatorname{Prime}(y))$
- $\forall x(\operatorname{Prime}(x) \rightarrow(\operatorname{Equal}(x, 2) \vee \operatorname{Odd}(x))$
- $\exists x \exists y(\operatorname{Equal}(x, y+2) \wedge \operatorname{Prime}(x) \wedge \operatorname{Prime}(y))$

Proofs

- Start with hypotheses and facts
- Use rules of inference to extend set of facts
- Result is proved when it is included in the set

Simple Propositional Inference Rules

- Excluded middle

$$
\therefore p \vee \neg p
$$

- Two inference rules per binary connective one to eliminate it, one to introduce it.

Even $(x) \equiv \exists y$ ($x=2 y$) $\operatorname{Odd}(x) \equiv \exists y \quad(x=2 y+1)$ Domain: Integers

- Prove: "The square of every odd number is odd"

English proof of: $\forall x\left(\operatorname{Odd}(\mathrm{x}) \rightarrow \operatorname{Odd}\left(\mathrm{x}^{2}\right)\right)$
Let x be an odd number.
Then $\mathrm{x}=2 \mathrm{k}+1$ for some integer k (depending on x)
Therefore $x^{2}=(2 k+1)^{2}=4 k^{2}+4 k+1=2\left(2 k^{2}+2 k\right)+1$.
Since $2 k^{2}+2 k$ is an integer, x^{2} is odd.

Characteristic vectors

- Let $U=\{1, \ldots, 10\}$, represent the set \{1,3,4,8,9\} with

1011000110

- Bit operations:
$-0110110100 \vee 0011010110=0111110110$
- ls -1

```
drwxr-xr-x ... Documents/
-rw-r--r-- ... file1
```


One-time pad

- Alice and Bob privately share random n -bit vector K
- Eve does not know K
- Later, Alice has n -bit message m to send to Bob
- Alice computes $\mathrm{C}=\mathrm{m} \oplus \mathrm{K}$
- Alice sends C to Bob
- Bob computes $m=C \oplus K$ which is $(m \oplus K) \oplus K$
- Eve cannot figure out m from C unless she can guess K

Arithmetic mod 7

- $a+{ }_{7} b=(a+b) \bmod 7$
- $a \times_{7} b=(a \times b) \bmod 7$

+	0	1	2	3	4	5	6
0	0	1	2	3	4	5	6
1	1	2	3	4	5	6	0
2	2	3	4	5	6	0	1
3	3	4	5	6	0	1	2
4	4	5	6	0	1	2	3
5	5	6	0	1	2	3	4
6	6	0	1	2	3	4	5

x	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	0	6	5	4	3	2	1

Division Theorem

Let a be an integer and d a positive integer.
Then there are unique integers q and r, with $0 \leq r<d$, such that $a=d q+r$.

$$
q=a \operatorname{div} d \quad r=a \bmod d
$$

Modular Arithmetic

Let a and b be integers, and m be a positive integer. We say a is congruent to b modulo m if m divides $a-b$. We use the notation $\mathrm{a} \equiv \mathrm{b}(\bmod \mathrm{m})$ to indicate that a is congruent to b modulo m .

Let a and b be integers, and let m be a positive integer.
Then $\mathrm{a} \equiv \mathrm{b}(\bmod \mathrm{m})$ if and only if a $\bmod \mathrm{m}=\mathrm{b} \bmod \mathrm{m}$.

```
Let m}\mathrm{ be a positive integer. If a }\equiv\textrm{b}(\operatorname{mod}m)\mathrm{ and
c =d (mod m), then
    a+c\equivb+d (modm) and
    ac \equivbd (mod m)
```

Let a and b be integers, and let m be a positive integer. Then $\mathrm{a} \equiv \mathrm{b}(\bmod \mathrm{m})$ if and only if
$a \bmod m=b \bmod m$.

Integer representation

Signed integer representation
Suppose $-2^{n-1}<x<2^{n-1}$
First bit as the sign, $\mathrm{n}-1$ bits for the value
99: 0110 0011, $\quad-18: 10010010$
Two's complement representation
Suppose $0 \leq x<2^{n-1}$,
x is represented by the binary representation of x $-x$ is represented by the binary representation of 2^{n-x}

99: 0110 0011,
-18: 11101110

Hashing

- Map values from a large domain, $0 . . . \mathrm{M}-1$ in a much smaller domain, 0...n-1
- Index lookup
- Test for equality
- $\operatorname{Hash}(\mathrm{x})=\mathrm{x} \bmod \mathrm{p}$
$-($ or $\operatorname{Hash}(x)=(a x+b) \bmod p)$
- Often want the hash function to depend on all of the bits of the data
- Collision management

Modular Exponentiation

x	1	2	3	4	5	6
1	1	2	3	4	5	6
2	2	4	6	1	3	5
3	3	6	2	5	1	4
4	4	1	5	2	6	3
5	5	3	1	6	4	2
6	6	5	4	3	2	1

a	a^{1}	a^{2}	a^{3}	a^{4}	a^{5}	a^{6}
1	1	1	1	1	1	1
2	2	4	1	2	4	1
3	3	2	6	4	5	1
4	4	2	1	4	2	1
5	5	4	6	2	3	1
6	6	1	6	1	6	1

Arithmetic mod 7

Fast exponentiation

Repeated Squaring

Primality

An integer p greater than 1 is called prime if the only positive factors of p are 1 and p.

A positive integer that is greater than 1 and is not prime is called composite.

Fundamental Theorem of Arithmetic: Every positive integer greater than 1 has a unique prime factorization

GCD and Factoring

$a=2^{3} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11=46,200$
$b=2 \cdot 3^{2} \cdot 5^{3} \cdot 7 \cdot 13=204,750$
$\operatorname{GCD}(\mathrm{a}, \mathrm{b})=2^{\min (3,1)} \cdot 3^{\min (1,2)} \cdot 5^{\min (2,3)} \cdot 7^{\min (1,1)}$

- $11^{\min (1,0)} \cdot 13^{\text {min }}(0,1)$

Euclid's Algorithm

- $\operatorname{GCD}(x, y)=\operatorname{GCD}(y, x \bmod y)$

```
int GCD(int a, int b){/* a >= b, b > 0 */
    int tmp;
    int x = a;
    int y = b;
    while (y>0){
        tmp = x % y;
        x = y;
        l
    }
    return x;
}
```


Multiplicative Inverse mod m

Suppose GCD $(\mathrm{a}, \mathrm{m})=1$

By Bézoit's Theorem, there exist integers s and t such that $\mathrm{sa}+\mathrm{tm}=1$.
s mod m is the multiplicative inverse of a :
$1=(\mathrm{sa}+\mathrm{tm}) \bmod \mathrm{m}=\mathrm{samod} \mathrm{m}$

Induction proofs

```
P(0)
\forallk(P(k)->P(k+1))
\therefore\forallnP(n)
```

1. Prove $P(0)$
2. Let k be an arbitrary integer ≥ 0
3. Assume that $P(k)$ is true
4. ..
5. Prove $P(k+1)$ is true
6. $P(k) \rightarrow P(k+1)$

Direct Proof Rule
7. $\forall \mathrm{k}(\mathrm{P}(\mathrm{k}) \rightarrow \mathrm{P}(\mathrm{k}+1))$
8. $\forall \mathrm{nP}(\mathrm{n})$ Intro \forall from 2-6 Induction Rule 1\&7

Strong Induction

$\begin{aligned} & \mathrm{P}(0) \\ & \forall \mathrm{k}((\mathrm{P}(0) \wedge \mathrm{P}(1) \wedge \mathrm{P}(2) \wedge \ldots \wedge \mathrm{P}(\mathrm{k})) \rightarrow \mathrm{P}(\mathrm{k}+1)) \\ \therefore & \forall \mathrm{nP}(\mathrm{n})\end{aligned}$

Recursive definitions of functions

- $F(0)=0 ; F(n+1)=F(n)+1 ;$
- $G(0)=1 ; G(n+1)=2 \times G(n) ;$
- $0!=1 ;(n+1)!=(n+1) \times n!$
- $f_{0}=0 ; f_{1}=1 ; f_{n}=f_{n-1}+f_{n-2}$

Strings

- The set Σ^{*} of strings over the alphabet Σ is defined
- Basis: $\lambda \in S$ (λ is the empty string)
- Recursive: if $w \in \Sigma^{*}, x \in \Sigma$, then $w x \in \Sigma^{*}$
- Palindromes: strings that are the same backwards and forwards.
- Basis: λ is a palindrome and any a $\in \Sigma$ is a palindrome
- If p is a palindrome then apa is a palindrome for every a $\in \Sigma$

Function definitions on recursively defined sets

$\operatorname{Len}(\lambda)=0$;
$\operatorname{Len}(w x)=1+\operatorname{Len}(w) ;$ for $w \in \Sigma^{*}, x \in \Sigma$

Concat $(w, \lambda)=w$ for $w \in \Sigma^{*}$
$\operatorname{Concat}\left(\mathrm{w}_{1}, \mathrm{w}_{2} \mathrm{x}\right)=\operatorname{Concat}\left(\mathrm{w}_{1}, \mathrm{w}_{2}\right) \mathrm{x}$ for $\mathrm{w}_{1}, \mathrm{w}_{2}$ in $\Sigma^{\star}, \mathrm{x} \in \Sigma$

Prove:
Len(Concat(x, y) $)=\operatorname{Len}(x)+\operatorname{Len}(y)$ for all strings x and y

Rooted Binary trees

- Basis: - is a rooted binary tree
- Recursive Step:

binary trees then so is:

Functions defined on rooted binary trees

- $\operatorname{size}(\bullet)=1$
- $\operatorname{size}(\underbrace{}_{-1}$,
- height $(\bullet)=0$
- $\operatorname{height}(\Omega)=1+\max \left\{\operatorname{height}\left(\mathrm{T}_{1}\right)\right.$, height $\left.\left(\mathrm{T}_{2}\right)\right\}$

Prove:
For every rooted binary tree T, size $(T) \leq 2^{\text {height }(T)+1}-1$

Regular Expressions over Σ

- Each is a "pattern" that specifies a set of strings
- Basis:
$-\varnothing, \lambda$ are regular expressions
$-\boldsymbol{a}$ is a regular expression for any $a \in \Sigma$
- Recursive step:
- If \mathbf{A} and \mathbf{B} are regular expressions then so are:
- $(A \cup B)$
- (AB)
- A^{*}

Regular Expressions

- 0^{*}
- 0*1*
- $(0 \cup 1)^{*}$
- $\left(0^{*} 1^{*}\right)^{*}$
- $(0 \cup 1)^{*} 0110(0 \cup 1)^{*}$
- $(0 \cup 1)^{*}(0110 \cup 100)(0 \cup 1)^{*}$

Context-Free Grammars

- Example: $\quad \mathbf{S} \rightarrow \mathbf{0 S} \mathbf{0}|\mathbf{S} 1| 0|1| \lambda$
- Example: $\mathbf{S} \rightarrow \mathbf{0 S}|\mathbf{S} 1| \lambda$

Sample Context-Free Grammars

- Grammar for $\left\{0^{n} 1^{n}: n \geq 0\right\}$ all strings with same \# of 0's and 1's with all 0's before 1's.
- Example: $\quad \mathbf{S} \rightarrow \mathbf{(S)}|\mathbf{S S}| \lambda$

Building in Precedence in Simple Arithmetic Expressions

- E - expression (start symbol)
- T-term \mathbf{F} - factor \mathbf{I}-identifier \mathbf{N} - number
$\mathrm{E} \rightarrow \mathrm{T} \mid \mathrm{E}+\mathrm{T}$
$\mathbf{T} \rightarrow \mathbf{F} \mid \mathbf{F}^{\star} \mathbf{T}$
$\mathrm{F} \rightarrow(\mathbf{E})|\mathbf{I}| \mathbf{N}$
I $\rightarrow \mathrm{x}|\mathrm{y}| \mathrm{z}$
$\mathbf{N} \rightarrow 0|1| 2|3| 4|5| 6|7| 8 \mid 9$

BNF for C

```
statement:
    ((identifier | "case" constant-expression | "default") ":")*
    (expression? ";" |
    block |
    "if" "(" expression ")" statement
    "if" "(" expression ")" statement "else" statement 
    "switch" "(" expression ")" statement
    "do" statement "while" "(" expression ")" ";"
    "for" "(" expression? ";" expression? ";" expression? ")" statement
    "goto" identifier ";
    "continue","
    "return" expression? ";
    )
block: "{" declaration* statement* "}"
expression:
    assignment-expression%
assignment-expression:
    unary-expression (%
    )* conditional-expression
conditional-expression:

\section*{Combining Relations}

Let \(R\) be a relation from \(A\) to \(B\) Let \(S\) be a relation from \(B\) to \(C\) The composite of \(R\) and \(S, S{ }^{\circ} R\) is the relation from \(A\) to \(C\) defined
\(S^{\circ} R=\{(a, c) \mid \exists b\) such that \((a, b) \in R\) and \((b, c) \in S\}\)
\(R\) is reflexive iff \((a, a) \in R\) for every \(a \in A\)
\(R\) is symmetric iff \((a, b) \in R\) implies \((b, a) \in R\)
\(R\) is antisymmetric iff \((a, b) \in R\) and \(a \neq b\) implies \((b, a) \in R\)

\section*{Relations}
\((a, b) \in\) Parent: \(b\) is a parent of \(a\)
\((a, b) \in\) Sister: \(b\) is a sister of \(a\)
Aunt \(=\) Sister \({ }^{\circ}\) Parent
Grandparent \(=\) Parent \({ }^{\circ}\) Parent
\(R^{2}=R^{\circ} R=\{(a, c) \mid \exists b\) such that \((a, b) \in R\) and \((b, c) \in R\}\)
\(R^{0}=\{(a, a) \mid a \in A\}\)
\(R^{1}=R\)
\(R^{n+1}=R^{n} \circ R\)

\section*{Matrix representation for relations}

Relation \(R\) on \(A=\left\{a_{1}, \ldots a_{p}\right\}\)
\(m_{i j}=\left\{\begin{array}{l}1 \text { if }\left(a_{i}, a_{j}\right) \in R, \\ 0 \text { if }\left(a_{i}, a_{j}\right) \notin R .\end{array}\right.\)
\(\{(1,1),(1,2),(1,4),(2,1),(2,3),(3,2),(3,3)(4,2)(4,3)\}\)


\section*{n -ary relations}

Let \(A_{1}, A_{2}, \ldots, A_{n}\) be sets. An n-ary relation on these sets is a subset of \(A_{1} \times A_{2} \times \ldots \times A_{n}\).
\begin{tabular}{|l|l|l|}
\hline Student_ID & Name & GPA \\
\hline 328012098 & Knuth & 4.00 \\
\hline 481080220 & Von Neuman & 3.78 \\
\hline 238082388 & Russell & 3.85 \\
\hline 238001920 & Einstein & 2.11 \\
\hline 1727017 & Newton & 3.61 \\
\hline 348882811 & Karp & 3.98 \\
\hline 2921938 & Bernoulli & 3.21 \\
\hline 2921939 & Bernoulli & 3.54 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Student_ID & Major \\
\hline 328012098 & CS \\
\hline 481080220 & CS \\
\hline 481080220 & Mathematics \\
\hline 238082388 & Philosophy \\
\hline 238001920 & Physics \\
\hline 1727017 & Mathematics \\
\hline 348882811 & CS \\
\hline 1727017 & Physics \\
\hline 2921938 & Mathematics \\
\hline 2921939 & Mathematics 4 \\
\hline
\end{tabular}

\section*{Representation of relations}

Directed Graph Representation (Digraph)
\(\{(a, b),(a, a),(b, a),(c, a),(c, d),(c, e)(d, e)\}\)


\section*{Paths in relations}

Let \(R\) be a relation on a set \(A\). There is a path of length \(n\) from \(a\) to \(b\) if and only if \((a, b) \in R^{n}\)
\((a, b)\) is in the transitive-reflexive closure of \(R\) if and only if there is a path from \(a\) to \(b\). (Note: by definition, there is a path of length 0 from a to a.)

\section*{Finite state machines}

\section*{States}

Transitions on inputs
Start state and finals states
The language recognized by a machine is the set of strings that reach a final state
\begin{tabular}{|c|c|c|}
\hline State & 0 & 1 \\
\hline \(\mathrm{~s}_{0}\) & \(\mathrm{~s}_{0}\) & \(\mathrm{~s}_{1}\) \\
\hline \(\mathrm{~s}_{1}\) & \(\mathrm{~s}_{0}\) & \(\mathrm{~s}_{2}\) \\
\hline \(\mathrm{~s}_{2}\) & \(\mathrm{~s}_{0}\) & \(\mathrm{~s}_{3}\) \\
\hline \(\mathrm{~s}_{3}\) & \(\mathrm{~s}_{3}\) & \(\mathrm{~s}_{3}\) \\
\hline
\end{tabular}


Accepts strings with an odd number of 1 's and an odd number of 0's


Accept strings with a 1 three positions from the end


\section*{Product construction}
- Combining FSMs to check two properties at once
- New states record states of both FSMs


State machines with output
\begin{tabular}{|c|c|c|c|}
\hline & \multicolumn{2}{|c|}{ Input } & Output \\
\hline State & L & R & \\
\hline \(\mathrm{s}_{1}\) & \(\mathrm{~s}_{1}\) & \(\mathrm{~s}_{2}\) & Beep \\
\hline \(\mathrm{s}_{2}\) & \(\mathrm{~s}_{1}\) & \(\mathrm{~s}_{3}\) & \\
\hline \(\mathrm{~s}_{3}\) & \(\mathrm{~s}_{2}\) & \(\mathrm{~s}_{4}\) & \\
\hline \(\mathrm{~s}_{4}\) & \(\mathrm{~s}_{3}\) & \(\mathrm{~s}_{4}\) & Beep \\
\hline
\end{tabular}
"Tug-of-war"
(

Enter 15 cents in dimes or nickels
Press S or B for a candy bar


\section*{State minimization}

Finite State Machines with output at states


\section*{Nondeterministic Finite Automaton} (NFA)
- Graph with start state, final states, edges labeled by symbols (like DFA) but
- Not required to have exactly 1 edge out of each state labeled by each symbol - can have 0 or \(>1\)
- Also can have edges labeled by empty string \(\lambda\)
- Definition: x is in the language recognized by an NFA iff \(x\) labels a path from the start state to some final state


\section*{Another way to look at DFAs}

\section*{Definition: The label of a path in a DFA is the concatenation of all the labels on its edges in order}

Lemma: \(x\) is in the language recognized by a DFA iff \(x\) labels a path from the start state to some final state



Accepts strings with a 1 three positions from the end of the string

Building a NFA from a regular expression
\((01 \cup 1)^{\star} 0\)


The set B of binary palindromes cannot be recognized by any DFA
Consider the infinite set of strings
\(S=\{\lambda, 0,00,000,0000, \ldots\}\)
Claim: No two strings in \(S\) can end at the same
state of any DFA for B, so no such DFA can exist
Proof: Suppose \(n \neq m\) and \(0^{n}\) and \(0^{m}\) end at the same state p .
Since \(0^{n} 10^{n}\) is in \(B\), following \(10^{n}\) after state \(p\) must lead to a final state.
But then the DFA would accept \(0^{m} 10^{\text {n }}\)
which is a contradiction

\section*{NFA to DFA: Subset construction}



DFA

\section*{Cardinality}
- A set \(S\) is countable iff we can write it as \(S=\left\{s_{1}, s_{2}, s_{3}, \ldots\right\}\) indexed by \(\mathbb{N}\)
- Set of integers is countable \(-\{0,1,-1,2,-2,3,-3,4, \ldots\}\)
- Set of rationals is countable
- "dovetailing"
\(1 / 1 \quad 1 / 2 \quad 1 / 3\) 1/4 \(1 / 2 / 5 \quad 1 / 6 \quad 1 / 7 \quad 1 / 8\) \(\begin{array}{llllllllllllll}2 / 1 & 2 / 2 & 2 / 3 & 2 / 4 & 2 / 5 & 2 / 6 & 2 / 7 & 2 / 8\end{array}\) \(\begin{array}{llllllllll}3 / 1 & 3 / 2 & 3 / 3 & 3 / 4 & 315 & 3 / 6 & 3 / 7 & 3 / 8\end{array}\) \(\begin{array}{lllllllll}4 / 1 & 4 / 2 & 4 / 3 & 4 / 4 & 4 / 5 & 4 / 6 & 4 / 7 & 4 / 8\end{array}\) \(\begin{array}{llllllll}5 / 1 & 512 & 5 / 3 & 5 / 4 & 5 / 5 & 5 / 6 & 5 / 7 & \ldots\end{array}\) \(\begin{array}{llllll}6 / 1 & 6 / 2 & 6 / 3 & 6 / 4 & 6 / 5 & 6 / 6\end{array}\) \(\begin{array}{llllll}7 / 1 & 7 / 2 & 7 / 3 & 7 / 4 & 7 / 5 & \ldots\end{array}\)
- \(\Sigma^{*}\) is countable
\(-\{0,1\}^{*}=\{0,1,00,01,10,11,000,001,010,011,100,101, \ldots\}\)
- Set of all (Java) programs is countable

The real numbers are not countable
- "diagonalization"
\begin{tabular}{llllllllllll} 
& & & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\(r_{1}\) & 0. & \(5^{1}\) & \(5^{1}\) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \(\ldots\) \\
\(r_{2}\) & 0. & 3 & \(3^{5}\) & 3 & 3 & 3 & 3 & 3 & 3 & \(\ldots\) & \(\ldots\) \\
\(r_{3}\) & 0. & 1 & 4 & \(2^{5}\) & 8 & 5 & 7 & 1 & 4 & \(\ldots\) & \(\ldots\) \\
\(r_{4}\) & 0. & 1 & 4 & 1 & \(5^{1}\) & 9 & 2 & 6 & 5 & \(\ldots\) & \(\ldots\) \\
\(r_{5}\) & 0. & 1 & 2 & 1 & 2 & \(2^{5}\) & 1 & 2 & 2 & \(\ldots\) & \(\ldots\) \\
\(r_{6}\) & 0. & 2 & 5 & 0 & 0 & 0 & \(0^{5}\) & 0 & 0 & \(\ldots\) & \(\ldots\) \\
\(r_{7}\) & 0. & 7 & 1 & 8 & 2 & 8 & 1 & \(8^{5}\) & 2 & \(\ldots\) & \(\ldots\) \\
\(r_{8}\) & 0. & 6 & 1 & 8 & 0 & 3 & 3 & 9 & \(4^{5}\) & \(\ldots\) & \(\ldots\) \\
& & & & & & & & & & \(\ldots\) & \(\ldots\)
\end{tabular}

\section*{General models of computation}

\section*{Control structures with infinite storage}

\section*{Many models}

Turing machines
Functional
Recursion
Java programs

\section*{Church-Turing Thesis}

Any reasonable model of computation that includes all possible algorithms is equivalent in power to a Turing machine

\section*{What is a Turing Machine?}


\section*{Halting Problem}
- Given: the code of a program \(\mathbf{P}\) and an input \(\mathbf{x}\) for \(\mathbf{P}\), i.e. given ( \(\langle\mathbf{P}\rangle, \mathbf{x}\) )
- Output: 1 if \(\mathbf{P}\) halts on input \(\mathbf{x}\) \(\mathbf{0}\) if \(\mathbf{P}\) does not halt on input \(\mathbf{x}\)

Theorem (Turing): There is no program that solves the halting problem
"The halting problem is undecidable"

Suppose \(H(<P>, x)\) solves the Halting problem
if \(\mathbf{H}(\mathbf{x}, \mathbf{x})=1\) then while (true); /* loop forever */ else
no-op; /* do nothing and halt */ endif
\(\Leftrightarrow\) H outputs 1 on input (<D>,<D>)
[since \(\mathbf{H}\) solves the halting problem and so [since \(\mathbf{H}\) solves the halting problem and so
\(\mathbf{H}(<\mathbf{D}>, \mathbf{x})\) outputs \(\mathbf{1}\) iff \(\mathbf{D}\) halts on input \(\mathbf{x}]\)
\(\Leftrightarrow\) D runs forever on input <D>
[since \(\mathbf{D}\) goes into an infinite loop on \(\mathbf{x}\) iff \(\mathbf{H}(\mathbf{x}, \mathbf{x})=\mathbf{1}\) ]

\section*{Does D halt on input < \(\mathrm{D}>\) ?}

D halts on input <D>

Does a program have a divide by 0 error?

Input: A program < \(\mathbf{P}>\) and an input string \(\mathbf{x}\) Output: \(\mathbf{1}\) if \(\mathbf{P}\) has a divide by 0 error on input \(\mathbf{x}\) 0 otherwise

Claim: The divide by zero problem is undecidable

\section*{Program equivalence}

Input: the codes of two programs, <P> and <Q>
Output: \(\mathbf{1}\) if \(\mathbf{P}\) produces the same output as \(\mathbf{Q}\) does on every input
0 otherwise
Claim: The equivalent program problem is undecidable


\section*{Teaching evaluation}
- Please answer the questions on both sides of the form. This includes the ABET questions on the back```

