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Announcements

• Reading

– 7th edition: p. 201 and 13.5 

– 6th edition: p. 177 and 12.5

• My office hours this week

– Usual: today immediately after class until 2:50pm

– Extra office hour:  Thursday 11-12

• Homework 8 due Friday

– Solutions available Friday night-Saturday online on password-protected page

• Final Exam, Monday, June 10, 2:30-4:20 pm MGH 389

– Topic list and sample final exam problems have been posted

– Comprehensive final, closed book, closed notes

– Review session, Sunday, June 9, 4:00 pm EEB 125
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Last lecture highlights
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Last lecture highlights

• The Universal Turing Machine U

– Takes as input: (<P>,x) where <P> is the code of a    

program and x is an input string

– Simulates P on input x

• Same as a Program Interpreter
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Programs about Program 

Properties

• The Universal TM takes a program code <P> as 

input, and an input x, and interprets P on x

– Step by step by step by step…

• Can we write a TM that takes a program code 

<P> as input and checks some property of the 

program?

– Does P ever return the output “ERROR”?

– Does P always return the output “ERROR”?

– Does P halt on input x?
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Halting Problem

• Given: the code of a program P and an input x

for P, i.e. given (<P>,x)

• Output: 1 if P halts on input x

0 if P does not halt on input x

Theorem (Turing): There is no program that 

solves the halting problem 

“The halting problem is undecidable”

Proof by contradiction

• Suppose that H is a Turing machine that solves 
the Halting problem

Function D(x):

• if H(x,x)=1 then

– while (true); /* loop forever */

• else

– no-op; /* do nothing and halt */

• endif

• What does D do on input <D>?

– Does it halt?
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D halts on input <D>

H outputs 1 on input (<D>,<D>) 

[since H solves the halting problem and so    

H(<D>,x) outputs 1 iff D halts on input x]

D runs forever on input <D>

[since D goes into an infinite loop on x iff H(x,x)=1]

Function D(x):

• if H(x,x)=1 then

– while (true); /* loop forever */

• else

– no-op; /* do nothing and halt */

• endif

Does D halt on input <D>?
That’s it!

• We proved that there is no computer program 

that can solve the Halting Problem.

• This tells us that there is no compiler that can 

check our programs and guarantee to find any 

infinite loops they might have
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SCOOPING THE LOOP SNOOPER
A proof that the Halting Problem is undecidable 

by Geoffrey K. Pullum (U. Edinburgh)

11

No general procedure for bug checks succeeds.

Now, I won’t just assert that, I’ll show where it leads: 

I will prove that although you might work till you drop, 

you cannot tell if computation will stop.

For imagine we have a procedure called P

that for specified input permits you to see

whether specified source code, with all of its faults,

defines a routine that eventually halts.

You feed in your program, with suitable data, 

and P gets to work, and a little while later 

(in finite compute time) correctly infers

whether infinite looping behavior occurs... 

SCOOPING THE LOOP SNOOPER
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...

Here’s the trick that I’ll use -- and it’s simple to do. 

I’ll define a procedure, which I will call Q,

that will use P’s predictions of halting success 

to stir up a terrible logical mess. 

...

And this program called Q wouldn’t stay on the shelf; 

I would ask it to forecast its run on itself.

When it reads its own source code, just what will it do? 

What’s the looping behavior of Q run on Q? 

...

Full poem at:

http://www.lel.ed.ac.uk/~gpullum/loopsnoop.html
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Another view of the proof

undecidability of the Halting Problem

• Suppose that there is a program H that computes the 
answer to the Halting Problem

• We will build a table with a row for each program (just 
like we did for uncountability of reals) 

• If the supposed program H exists then the D program we 

constructed as before will exist and so be in the table

• But D must have entries like the  “flipped diagonal” 

– D can’t possibly be in the table.    

– Only assumption was that H exists.  That must be false.
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<P1> <P2> <P3> <P4> <P5> <P6> ....

Some possible inputs x

P1

P2

P3

P4

P5

P6

P7

P8

P9

.

.

0     1     1     0    1     1    1     0      0      0    1  ...

1     1     0     1    0     1    1     0      1      1   1  ...

1     0     1     0    0     0    0     0      0      0    1  ...

0     1     1  0    1     0    1     1      0      1   0  ...

0     1     1     1    1     1    1     0      0      0   1  ...

1     1     0     0    0     1    1     0      1      1   1  ...

1     0     1     1    0     0    0     0      0      0   1  ...

0     1     1     1    1     0    1     1      0      1   0  ...

.     .   .  .   .    .   .   .   .    .    .       .  

.     .   .  .   .    .   .   .   .    .    .       .  

(P,x) entry is 1 if program P halts on input x
and 0 if it runs forever
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Some possible inputs x
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P8
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.

.

0 1     1     0    1     1    1     0      0      0    1  ...

1     1 0     1    0     1    1     0      1      1    1  ...

1     0     1 0    0     0    0     0      0      0    1  ...

0     1     1  0 1     0    1     1      0      1   0  ...

0     1     1     1    1 1    1     0      0      0   1  ...

1     1     0     0    0     1 1     0      1      1   1  ...

1     0     1     1    0     0    0 0      0      0   1  ...

0     1     1     1    1     0    1     1 0      1    0  ...

.     .   .  .   .    .   .   .   .    .    .       .  

.     .   .  .   .    .   .   .   .    .    .       .  

(P,x) entry is 1 if program P halts on input x

and 0 if it runs forever
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<P1> <P2> <P3> <P4> <P5> <P6> ....

Some possible inputs x

P1

P2

P3

P4

P5

P6

P7

P8

P9

.

.

0 1     1     0    1     1    1     0      0      0    1  ...

1     1 0     1    0     1    1     0      1      1    1  ...

1     0     1 0    0     0    0     0      0      0    1  ...

0     1     1  0 1     0    1     1      0      1    0  ...

0     1     1     1    1 1    1     0      0      0   1  ...

1     1     0     0    0     1 1     0      1      1   1  ...

1     0     1     1    0     0    0 0      0      0    1  ...

0     1     1     1    1     0    1     1 0      1   0  ...

.     .   .  .   .    .   .   .   .    .    .       .  

.     .   .  .   .    .   .   .   .    .    .       .  

(P,x) entry is 1 if program P halts on input x

and 0 if it runs forever

D behaves like 

flipped diagonal
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0
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Recall: Code for D assuming subroutine H that 

solves the Halting Problem

• Function D(x):

– if H(x,x)=1 then

• while (true); /* loop forever */

– else

• no-op; /* do nothing and halt */

– endif

• If D existed it would have a row different from every 

row of the table

– D can’t be a program  so H cannot exist!

Halting Problem
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H
x 1 if P(x) halts

0 if P(x) does not halt<<<<P>>>>
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That’s it!

• We proved that there is no computer program 

that can solve the Halting Problem.

• This tells us that there is no compiler that can 

check our programs and guarantee to find any 

infinite loops they might have

– The full story is even worse

The “Always Halting” problem

• Given: <Q>, the code of a program Q

• Output: 1 if Q halts on every input 
0 if not.

Claim: the “always halts” problem is undecidable

Proof idea:
– Show we could solve the Halting Problem if we had a 

solution for the “always halts” problem. 

– No program solving for Halting Problem exists     ⇒⇒⇒⇒ no 
program solving the “always halts” problem exists 
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The “Always Halting” problem

21

H
x 1 if P(x) halts

0 if P(x) does not halt<<<<P>>>>

HALT

Suppose we had a TM A for the Always Halting problem

Convert
x

<<<<P>>>>
A<<<<Q>>>> 1 if P(x) halts

0 if P(x) does 

not halt
… 

a←x

… 

… 

Read(a)

… 

The “Always ERROR” problem

• Given: <R>, the code of a program R

• Output: 1 if R always prints ERROR 
0 if R does not always print ERROR 
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The “Always ERROR” problem
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A
1 if Q always halts

0 if Q does not always halt
<<<<Q>>>>

HALT

Suppose we had a TM E for the ERROR problem

<<<<Q>>>>
E

<<<<R>>>> 1 if Q always

halts

0 if Q does not

always halt
Q’s code 

…

end of Q

Convert’

Q’s code 
…

end of Q

Print ERROR

Pitfalls

• Not every problem on programs is undecidable! 

Which of these is decidable?

• Input <P> and x

Output: 1 if P prints “ERROR” on x

after less than 100 steps

0 otherwise

• Input <P> and x

Output: 1 if P prints “ERROR” on x

after more than 100 steps

0 otherwise
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