
CSE 311 Foundations of

Computing I

Lecture 27

Computability: Other Undecidable
Problems

Spring 2013

1

Announcements

• Reading

– 7th edition: p. 201 and 13.5

– 6th edition: p. 177 and 12.5

• My office hours this week

– Usual: today immediately after class until 2:50pm

– Extra office hour: Thursday 11-12

• Homework 8 due Friday

– Solutions available Friday night-Saturday online on password-protected page

• Final Exam, Monday, June 10, 2:30-4:20 pm MGH 389

– Topic list and sample final exam problems have been posted

– Comprehensive final, closed book, closed notes

– Review session, Sunday, June 9, 4:00 pm EEB 125

2

Last lecture highlights

3

_ _ 1 1 0 1 1 _ _
_ 0 1

s1 (1,s3) (1,s2) (0,s2)

s2 (H,s3) (R,s1) (R,s1)

s3 (H,s3) (R,s3) (R,s3)

Finite Control:

program P

Recording Medium

_ _ 0 1 0 1 1 _ _

……

input x

_ _ 0 0 1 0 0 1 _

Turing machine = Finite control + Recording Medium + Focus of attention

output

Last lecture highlights

• The Universal Turing Machine U

– Takes as input: (<P>,x) where <P> is the code of a

program and x is an input string

– Simulates P on input x

• Same as a Program Interpreter

4

P
input

x
output

P(x) U
x output

P(x)
<<<<P>>>>

Last lecture highlights

5

_ _ 1 1 0 1 1 _ __ 0 1

s1 (1,s3) (1,s2) (0,s2)

s2 (H,s3) (R,s1) (R,s1)

s3 (H,s3) (R,s3) (R,s3)

Program P input x

_ 0 1 () s 2 3 …

s1

s2

…

Universal TM U

(1 , s 3) (1 1 1 0 1 1 _ _

input xProgram code <P>

(1 , s 3) (1 0 0 1 0 0 1 _

output

Programs about Program

Properties

• The Universal TM takes a program code <P> as

input, and an input x, and interprets P on x

– Step by step by step by step…

• Can we write a TM that takes a program code

<P> as input and checks some property of the

program?

– Does P ever return the output “ERROR”?

– Does P always return the output “ERROR”?

– Does P halt on input x?

6

7

Halting Problem

• Given: the code of a program P and an input x

for P, i.e. given (<P>,x)

• Output: 1 if P halts on input x

0 if P does not halt on input x

Theorem (Turing): There is no program that

solves the halting problem

“The halting problem is undecidable”

Proof by contradiction

• Suppose that H is a Turing machine that solves
the Halting problem

Function D(x):

• if H(x,x)=1 then

– while (true); /* loop forever */

• else

– no-op; /* do nothing and halt */

• endif

• What does D do on input <D>?

– Does it halt?

8

9

D halts on input <D>

H outputs 1 on input (<D>,<D>)

[since H solves the halting problem and so

H(<D>,x) outputs 1 iff D halts on input x]

D runs forever on input <D>

[since D goes into an infinite loop on x iff H(x,x)=1]

Function D(x):

• if H(x,x)=1 then

– while (true); /* loop forever */

• else

– no-op; /* do nothing and halt */

• endif

Does D halt on input <D>?
That’s it!

• We proved that there is no computer program

that can solve the Halting Problem.

• This tells us that there is no compiler that can

check our programs and guarantee to find any

infinite loops they might have

10

SCOOPING THE LOOP SNOOPER
A proof that the Halting Problem is undecidable

by Geoffrey K. Pullum (U. Edinburgh)

11

No general procedure for bug checks succeeds.

Now, I won’t just assert that, I’ll show where it leads:

I will prove that although you might work till you drop,

you cannot tell if computation will stop.

For imagine we have a procedure called P

that for specified input permits you to see

whether specified source code, with all of its faults,

defines a routine that eventually halts.

You feed in your program, with suitable data,

and P gets to work, and a little while later

(in finite compute time) correctly infers

whether infinite looping behavior occurs...

SCOOPING THE LOOP SNOOPER

12

...

Here’s the trick that I’ll use -- and it’s simple to do.

I’ll define a procedure, which I will call Q,

that will use P’s predictions of halting success

to stir up a terrible logical mess.

...

And this program called Q wouldn’t stay on the shelf;

I would ask it to forecast its run on itself.

When it reads its own source code, just what will it do?

What’s the looping behavior of Q run on Q?

...

Full poem at:

http://www.lel.ed.ac.uk/~gpullum/loopsnoop.html

13

Another view of the proof

undecidability of the Halting Problem

• Suppose that there is a program H that computes the
answer to the Halting Problem

• We will build a table with a row for each program (just
like we did for uncountability of reals)

• If the supposed program H exists then the D program we

constructed as before will exist and so be in the table

• But D must have entries like the “flipped diagonal”

– D can’t possibly be in the table.

– Only assumption was that H exists. That must be false.

14

<P1> <P2> <P3> <P4> <P5> <P6>

Some possible inputs x

P1

P2

P3

P4

P5

P6

P7

P8

P9

.

.

0 1 1 0 1 1 1 0 0 0 1 ...

1 1 0 1 0 1 1 0 1 1 1 ...

1 0 1 0 0 0 0 0 0 0 1 ...

0 1 1 0 1 0 1 1 0 1 0 ...

0 1 1 1 1 1 1 0 0 0 1 ...

1 1 0 0 0 1 1 0 1 1 1 ...

1 0 1 1 0 0 0 0 0 0 1 ...

0 1 1 1 1 0 1 1 0 1 0 ...

.

.

(P,x) entry is 1 if program P halts on input x
and 0 if it runs forever

15

<P1> <P2> <P3> <P4> <P5> <P6>

Some possible inputs x

P1

P2

P3

P4

P5

P6

P7

P8

P9

.

.

0 1 1 0 1 1 1 0 0 0 1 ...

1 1 0 1 0 1 1 0 1 1 1 ...

1 0 1 0 0 0 0 0 0 0 1 ...

0 1 1 0 1 0 1 1 0 1 0 ...

0 1 1 1 1 1 1 0 0 0 1 ...

1 1 0 0 0 1 1 0 1 1 1 ...

1 0 1 1 0 0 0 0 0 0 1 ...

0 1 1 1 1 0 1 1 0 1 0 ...

.

.

(P,x) entry is 1 if program P halts on input x

and 0 if it runs forever
16

<P1> <P2> <P3> <P4> <P5> <P6>

Some possible inputs x

P1

P2

P3

P4

P5

P6

P7

P8

P9

.

.

0 1 1 0 1 1 1 0 0 0 1 ...

1 1 0 1 0 1 1 0 1 1 1 ...

1 0 1 0 0 0 0 0 0 0 1 ...

0 1 1 0 1 0 1 1 0 1 0 ...

0 1 1 1 1 1 1 0 0 0 1 ...

1 1 0 0 0 1 1 0 1 1 1 ...

1 0 1 1 0 0 0 0 0 0 1 ...

0 1 1 1 1 0 1 1 0 1 0 ...

.

.

(P,x) entry is 1 if program P halts on input x

and 0 if it runs forever

D behaves like

flipped diagonal

1

0

0

1

0

0

1

0

17

Recall: Code for D assuming subroutine H that

solves the Halting Problem

• Function D(x):

– if H(x,x)=1 then

• while (true); /* loop forever */

– else

• no-op; /* do nothing and halt */

– endif

• If D existed it would have a row different from every

row of the table

– D can’t be a program so H cannot exist!

Halting Problem

18

H
x 1 if P(x) halts

0 if P(x) does not halt<<<<P>>>>

19

That’s it!

• We proved that there is no computer program

that can solve the Halting Problem.

• This tells us that there is no compiler that can

check our programs and guarantee to find any

infinite loops they might have

– The full story is even worse

The “Always Halting” problem

• Given: <Q>, the code of a program Q

• Output: 1 if Q halts on every input
0 if not.

Claim: the “always halts” problem is undecidable

Proof idea:
– Show we could solve the Halting Problem if we had a

solution for the “always halts” problem.

– No program solving for Halting Problem exists ⇒⇒⇒⇒ no
program solving the “always halts” problem exists

20

The “Always Halting” problem

21

H
x 1 if P(x) halts

0 if P(x) does not halt<<<<P>>>>

HALT

Suppose we had a TM A for the Always Halting problem

Convert
x

<<<<P>>>>
A<<<<Q>>>> 1 if P(x) halts

0 if P(x) does

not halt
…

a←x

…

…

Read(a)

…

The “Always ERROR” problem

• Given: <R>, the code of a program R

• Output: 1 if R always prints ERROR
0 if R does not always print ERROR

22

The “Always ERROR” problem

23

A
1 if Q always halts

0 if Q does not always halt
<<<<Q>>>>

HALT

Suppose we had a TM E for the ERROR problem

<<<<Q>>>>
E

<<<<R>>>> 1 if Q always

halts

0 if Q does not

always halt
Q’s code

…

end of Q

Convert’

Q’s code
…

end of Q

Print ERROR

Pitfalls

• Not every problem on programs is undecidable!

Which of these is decidable?

• Input <P> and x

Output: 1 if P prints “ERROR” on x

after less than 100 steps

0 otherwise

• Input <P> and x

Output: 1 if P prints “ERROR” on x

after more than 100 steps

0 otherwise

24

